Студопедия — Вводная часть. Экспериментальными исследованиями установлено, что при движении жидкости часть полного напора (энергии) затрачивается на преодоление работы вязких и
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вводная часть. Экспериментальными исследованиями установлено, что при движении жидкости часть полного напора (энергии) затрачивается на преодоление работы вязких и






Экспериментальными исследованиями установлено, что при движении жидкости часть полного напора (энергии) затрачивается на преодоление работы вязких и инерционных сил, т.е. возникают потери напора.

При равномерном движении жидкости гидравлическое сопротивление, проявляющееся равномерно по всей длине потока, называют сопротивлением по длине, а вызываемые им потери напора ‑ потерями напора по длине ( hl ). Эти потери в круглых трубопроводах, работающих полным сечением, вычисляют по формуле Дарси-Вейсбаха:

(4.1)

где l ‑ безразмерный коэффициент, называемый коэффициентом гидравлического трения (коэффициентом Дарси). Величина коэффициента l характеризует гидравлическое сопротивление трубопровода и зависит в общем случае от числа Re Рейнольдса и относительной шероховатости Dэ /d трубопровода, т.е. l = f (Rе, Dэ/ d);

l, d ‑ длина и внутренний диаметр трубопровода;

‑ средняя скорость движения потока жидкости.

Величину коэффициента l при гидравлических экспериментах вычисляют по опытным данным из формулы (4.1). При гидравлических же расчетах – по эмпирическим и полуэмпирическим формулам, например, при ламинарном режиме lп = 64/Rе, а при турбулентном режиме движения и работе трубопровода в области доквадратичного сопротивления – по формуле А.Д. Альтшуля:

(4.2)

Величину абсолютной эквивалентной шероховатости Dэ при расчётах берут из справочной литературы в зависимости от материала трубопровода и состояния его внутренней поверхности. Например, для труб из органического стекла Dэ = 0, 006 мм, а для стальных водопроводных умеренно заржавленных труб Dэ = 0, 20…0, 50 мм.

Область гидравлического сопротивления при расчетах определяют или по графикам l = f (Re, Dэ/ d) непосредственно, полученным опытным путем для труб из различных материалов и приведенным в справочной литературе, например, по графику Никурадзе (рис. 4.1), или же с помощью соотношений и , предложенных А.Д. Альтшулем на основе использования этих графиков. В последнем случае поступают следующим образом.

Вычисляют соотношения 10 d /Dэ и 500 d /Dэ и сравнивают их с числом Рейнольдса Re = υ d / n. При этом, если, , трубопровод работает в области гидравлически гладких труб. Если , трубопровод работает в области квадратичного сопротивления. Если же 10 d /Dэ < Re < 500 d э/Dэ, трубопровод работает в области доквадратичного сопротивления.

Рис. 4.1. График зависимости коэффициента гидравлического трения l от числа Re Рейнольдса для труб с различной относительной шероховатостью D/d (график Никурадзе): I-I – зона вязкостного сопротивления; II-II – область гидравлически гладких труб; II-II и АВ – область до-квадратичного сопротивления; область справа от АВ – область квадратичного сопротивления.

Для каждой области гидравлического сопротивления предложены и используются при гидравлических расчетах свои формулы для вычисления коэффициента l.

Другой вид гидравлических сопротивлений, возникающих в местах резкого изменения конфигурации потока, называют местным сопротивлениями, а вызываемые ими потери напора ‑ местными потерями напора ( h м ).

Рис. 4.2. Схемы движения жидкости при резком изменении сечения трубопровода: а) ‑ резкое расширение трубопровода; б) – резкое сужение трубопровода.

При прохождении через любое местное сопротивление поток жидкости деформируется (рис. 4.2: а, б), вследствие чего поток становится неравномерным и резко изменяющимся, для которого характерны:

1) значительное искривления линий тока;

2) отрывы транзитной струи от стенок трубопровода (ввиду действия закона инерции) и возникновения в местах отрыва устойчивых водоворотов;

3) повышенная (по сравнению с равномерным движением) пульсация скоростей и давлений;

3) изменение формы (переформирование) эпюр скоростей.

Местные потери напора при гидравлических расчетах определяют по формуле Вейсбаха:

, (4.3)

где ‑ безразмерный коэффициент, коэффициент местного сопротивления;

‑ средняя скорость потока в сечении за местным сопротивлением, т.е. ниже по течению (если скорость , как исключение, принимается перед местным сопротивлением, это обязательно оговаривается).

Величина коэффициента ζ зависит в общем случае от числа Re Рейнольдса и от конфигурации, т.е. формы проточной части местного сопротивления. В частном случае, когда трубопровод, на котором расположено местное сопротивление, работает в области квадратичного сопротивления, величина коэффициента ζ от Re не зависит.

Величину ζ для каждого вида местного сопротивления определяют по данным гидравлических экспериментов, пользуясь формулой (4.3). Полученные таким образом значения коэффициентов ζ для различных видов местных сопротивлений (обычно в области квадратичных сопротивлений) приводятся в справочной и специальной литературе, откуда их берут при гидравлических расчётах. Исключение ‑ резкое расширение и резкое сужение трубопровода (см. рис. 4.2, а, б), для которых численные значения координаты ζ определяются по формулам, полученным теоретически. Так, если трубопровод резко расширяется, средняя скорость в формуле (4.3) взята перед местным сопротивлением υ 1,

, (4.4)

если же скорость берется за местным сопротивлением, т.е. υ 2,

(4.5)

Коэффициент ζ р.с. сопротивления при резком сужении трубопровода принято относить к скорости после сужения. При этом

, (4.6)

где ‑ коэффициент сжатия струи.







Дата добавления: 2014-11-10; просмотров: 823. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия