Студопедия — Тема 4. Линейные операторы
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тема 4. Линейные операторы






Понятие линейного оператора. Образ и прообраз векторов. Матрица линейного оператора в заданном базисе. Ранг оператора. Операции над линейными операторами. Нулевой и тождественный операторы. Собственные векторы и собственные значения линейного оператора (матрицы). Характеристический многочлен матрицы. Диагональный вид матрицы линейного оператора в базисе, состоящем из его собственных векторов. ([1 или 5, § 3.6, 3.7]; [2 или 6, § 3.3, 3.4], или [3, § 3.6, 3.7, 3.12, 3.13], или [4, § 3.8, 3.10, 3.18, 3.19]).

.

В этой теме рассматривается одно из базовых понятий линейной алгебры – понятие линейного оператора (преобразования, отображения), представляющего закон (правило), по которому каждому вектору х n -мерного пространства ставится в соответствие один вектор y m -мерного пространства . При оператор обращает в себя.

Линейность оператора определяется выполнением свойств аддитивности и однородности оператора [1, или 5, или 3, § 3.6]. Нужно знать, что каждому линейному оператору соответствует матрица А в некотором базисе . Верно и обратное утверждение . С помощью этой матрицы для любого вектора х можно найти его образ – вектор y.

Особую роль в приложениях линейной алгебры играют векторы, которые под воздействием линейного оператора преобразуются в новые векторы, коллинеарные исходным. Такие векторы получили название собственных векторов оператора (матрицы А), а соответствующие им числа – собственных значений оператора (матрицы А). Точные определения и нахождение собственных векторов и значений приведены в [1, или 5, или 3, пример 3.7].

Если базис линейного оператора составить из собственных векторов, то матрица оператора имеет наиболее простой вид и представляет собой диагональную матрицу, а соответствующая операция называется приведением данной матрицы к диагональному виду ([1, или 5, или 3, пример 3.8]).

 







Дата добавления: 2014-11-10; просмотров: 624. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия