Студопедия — ВЫЧИСЛЕНИЕ ПРОИЗВОДНЫХ И ИНТЕГРАЛОВ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ВЫЧИСЛЕНИЕ ПРОИЗВОДНЫХ И ИНТЕГРАЛОВ






Аналогично большинству других наиболее важных математических операций, в MathCad существует численное и символьное дифференцирование. Символьный метод имеет преимущества в том плане, что результат можно получить в виде функции, которую можно будет использовать в дальнейших расчетах. Численный же подход имеет преимущества в некоторых специфических задачах. MathCad позволяет вычислять как обычную производную, так и производные более высоких порядков, а также частные производные (рис. 13).

Оператор простого дифференцирования на панели Calculus для вычисления первой производной имеет два маркера, принцип заполнения которых следующий: в верхний вводится функция, в нижний - переменная, по которой вычисляется производная.

Рисунок 13 – Диалоговое окно для вычисления производных и интегралов

 

Результат может быть представлен в символьному виде, если использовать оператор символьного вывода ®, а потом обратиться к символьному процессору Symbolic/Evaluate (Символика/Вычислить в символах) (рис. 14).

 

Рисунок 14 –Меню символьного процессора Symbolic для вычисления в символах

 

При символьном дифференцировании можно оперировать с функциями нескольких переменных. Оператор дифференцирования может соединяться с любым вычислительным или символьным оператором. Особенно полезным есть оператор Sіmplіfy, так как выражение производной выдается в неупрощенном виде. Для упрощения ответа следует использовать операторы Collect (Приводить подобные), Factor (Раскладывает выражение на множители) и Expand (Раскрывать скобки).

Чтобы получить численное значение производной в нужной точке исходя из результатов символьного расчета, нужно сделать следующее:

1. Найти функцию производной, используя оператор символьного вывода (®).

2. Присвоить переменной соответствующее числовое значение.

3. Скопировать полученное выражение для производной и вычислить его символьно.

Панель Calculus (Вычисление) содержит два оператора интегрирования. Первый, Іndefіnіte Іntegral (Неопределенный интеграл), позволяет определить вид функции, которая интегрируется (рис. 15). Оператор неопределенного интеграла содержит два маркера, которые заполняются соответственно принятому в математике представлению: в левый вводится функция (или имя функции), под знак дифференциала - переменная интегрирования.

Чаще всего результат интегрирования представляет собой громоздкое выражение. В этом случае его следует упрощать. Наиболее универсальный инструмент, который для этого используется - оператор Sіmplіfy (Упростить). Однако иногда выражение можно упростить (оператор Collect), разложив по степеням (оператор Expand) или приведя дробь к общему знаменателю (оператор Factor). Чтобы задействовать нужный символьный оператор, следует выделить выражение интеграла и нажать соответствующую кнопку на панели Symbolіc (Символьные). Применить к результату интегрирования можно и сразу несколько символьных операторов.

Нахождение определенного интегралу выполняется подобно тому как вычисляется неопределенный интеграл. Для интегрирования необходимо обратиться на панели Символьные к функции sіmplіfy. Ввести оператор интегрирования. В соответствующих местах заполнить имя первой переменной и границы интегрирования. Если необходимо вычислить кратные интегралы, то на месте введения функции под интегралом ввести еще один оператор интегрирования, границы интегрирования и подынтегральную функцию. Аналогично выполняется интегрирование по нескольким переменным.

Можно определить интеграл в символьном виде, например, .

Для числового интегрирования MathCad предлагает воспользоваться встроенными программами вычисления интегралов (рис. 15). Для того, чтобы обратиться к приближенному расчету, необходимо в контекстном меню выбрать один из методов интегрирования.

 

Рисунок 15 –Меню со встроенными программами для числового интегрирования







Дата добавления: 2014-11-10; просмотров: 532. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия