Студопедия — Неравновесных системах
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Неравновесных системах






Виды процессов переноса

В предыдущих главах мы рассматривали исключительно равновесные свойства вещества или термодинамические процессы, которые квазистатически (т.е. очень медленно) переводят систему из одного равновесного состояния в другое. Мы не рассматривали сами процессы перехода из одного состояния системы в другое.В изолированной макроскопической системе равновесное состояние характеризуется однородным распределением плотности (концентрации) вещества, температуры и отсутствием упорядоченного движения газа или жидкости. Система с неоднородным распределением параметров (плотности, температуры и т.д.) будет стремиться к равновесию, т.е. к состоянию, характеризующемуся неизменностью этих параметров во времени и отсутствием в нем потоков (упорядоченного движения молекул газа или жидкости). Этот процесс называется релаксацией. Процессы выравнивания сопровождаются переносом ряда физических величин (массы, импульса, энергии) и называются потому явлениями переноса. скорость приближения неравновесной системы к равновесию должна быть связана с градиентами соответствующих параметров состояния 1. Эксперимент подтверждает это положение, которое позволяет описать явления диффузии (выравнивание плотности или концентрации за счет переноса массы в объеме), теплопроводности (выравнивание температуры по объему в результате переноса тепловой энергии хаотического движения частиц) и вязкости (выравнивание скоростей движения различных слоев текучей среды в связи с переносом импульса частиц сплошной среды).

1 Если некоторая скалярная величина А распределена в пространстве неравномерно, то быстроту (скорость) изменения этой величины по выбранному направлению характеризует градиент.

Градиент величины А () – вектор, направленный в каждой точке пространства в сторону быстрейшего возрастания этой величины, и численно равный изменению А на единицу длины этого направления. Если величина А меняется только вдоль одного направления (Оx), то модуль градиента:

.

За время dt через площадку, перпендикулярную к направлению переноса (х) будет перенесена некоторая физическая величина dB (масса, импульс, энергия), определяемая уравнением:

dS ^× dt,

где a - коэффициент пропорциональности, называемый коэффициентом переноса. Знак ² -² означает, что направление возрастания величины А и направление переноса величины В противоположны, т.е. перенос всегда происходит в сторону убыли величины А.

Законы переноса массы, энергии и импульса положены в основу теории неравновесных процессов, или физической кинетики. Прежде чем ознакомиться с законами физической кинетики, введем кинематические характеристики, с помощью которых описывается движение молекул в среде.

 

Число столкновений и

средняя длина свободного пробега молекул

Молекулы газа, находясь в непрерывном хаотическом движении, сталкиваются друг с другом. Каково же среднее количество столкновений á z ñ за единицу времени, и какова средняя длина пробега молекулы á l ñ от одного столкновения до другого? Минимальное расстояние, на которое могут сблизиться молекулы, называется эффективным диаметром молекулы (d). Он зависит от скорости сталкивающихся молекул, а значит от температуры газа.

 

(2.1)

Для определения á z ñ представим себе такую упрощенную модель: молекула в виде шарика диаметром d, которая движется среди других «застывших» молекул. Эта молекула столкнется только с теми молекулами, центры которых находятся на расстояниях, равных или меньших d (рис. 2.1). Можно представить, что это будет совершаться в некоторой области, которая по форме будет близка к цилиндру. В объёме V данного цилиндра среднее количество столкновений молекулы за 1 секунду равно:

á z ñ = n V á v ñ = np d 2á v ñ. (2.2)

Если учесть движения остальных молекул, то:

á z ñ = np d2 á v ñ, (2.3)

тогда средняя длина свободного пробега обратно пропорциональна концентрации молекул:

. (2.4)

При нормальных условиях á l ñ = 7× 10-8 м. Длину свободного пробега молекул можно определить экспериментально на основе изучения явлений переноса в газах.

Законы физической кинетики

Диффузия. При диффузии наблюдается перенос как однородных, так и разнородных газов. В результате этого происходит постепенное перемешивание масс газа, перенос массы газа. В химически чистых газах при постоянной температуре диффузия возникает вследствие неодинаковой плотности в различных частях объема газа. Явление диффузии для химически чистого газа подчиняется закону Фика:

. (2.5)

Плотность потока массы вещества , проходящего через единичную площадку, пропорциональна коэффициенту диффузии (измеряется в м2/с), - градиент плотности, равный скорости изменения плотности на единице длины х. Знак минус показывает, что перенос масс происходит в направлении убывания плотности. Коэффициент диффузии численно равен плотности потока массы при градиенте плотности, равном единице. Согласно кинетической теории газов:

. (2.6)

Поскольку средняя длина свободного пробега молекул обратно пропорциональна концентрации молекул n (см. уравнение (2.4)), а давление р тем больше, чем выше n, то коэффициент диффузии обратно пропорционален давлению газа.

Вязкость. Механизм внутреннего трения между параллельными слоями газа или жидкости, которые движутся относительно друг друга с различными скоростями, заключается в том, что из-за хаотического теплового движения происходит обмен молекулами между слоями. В результате этого импульс слоя, движущегося быстрее, уменьшается, а движущегося медленнее – увеличивается, что приводит к торможению слоя движущегося быстрее, и ускорению слоя, движущегося медленнее.

Сила внутреннего трения между слоями газа (жидкости) подчиняется

закону Ньютона:

, (2.7)

h - динамическая вязкость, или коэффициент внутреннего трения, или коэффициент вязкости; dv / dx – градиент скорости, показывающий быстроту изменения скорости в направлении х, которое перпендикулярно направлению движения слоев; S – площадь, на которую действует сила F.

Взаимодействие двух слоев согласно второму закону Ньютона, можно рассматривать как процесс, при котором изменение импульса одного слоя по отношению к другому за единицу времени равно по модулю действующей на каждый слой силе. Тогда плотность потока импульса:

. (2.8)

Знак минус указывает на то, что импульс переносится в направлении убывания скорости.

Динамическая вязкость h численно равна плотности потока импульса при градиенте скорости, равном единице, и вычисляется по формуле:

. (2.9)

Поскольку плотность r прямо пропорциональна давлению р, а длина свободного пробега á l ñ обратно пропорциональна давлению, то коэффициент внутреннего трения не зависит от давления. Он определяется главным образом природой химических веществ и температурой.

Закон Ньютона для внутреннего трения используется, например, при выводе так называемой формулы Пуазейля, определяющей объём V вязкой жидкости, которая протекает за время t по трубе радиуса r и длины l из-за разницы давлений на краях трубы, равной Δ p:

. (2.10)

Теплопроводность. В газах перенос тепла происходит от нагретой части с температурой Т 1к более холодной с температурой Т 2. Передача теплаосуществляетсявследствие постоянных столкновений молекул, имеющих большую кинетическую энергию с молекулами, энергия которых меньше. Постепенно идет процесс выравнивания средних кинетических энергий молекул. Перенос энергии в форме теплоты подчиняется закону Фурье:

, (2.11)

- плотность теплового потока, l - коэффициент теплопроводности; - градиент температуры, равный скорости изменения температуры на единицу длины х в направлении нормали к этой площадке. Знак минус показывает, что при теплопроводности энергия переносится в направлении убывания температуры.

Коэффициент теплопроводности l равен:

, (2.12)

сV – удельная теплоемкость газа при постоянном объеме (количество теплоты, необходимое для нагревания 1 кг газа на 1 К при постоянном объеме). Коэффициент теплопроводности l измеряется в Вт/(м× К).

Итак, в газах явления диффузии, вязкости и теплопроводности имеют немало общего:

1) все эти явления обусловливаются переносом: явление диффузии – переносом массы, явление теплопроводности – переносом энергии, явление вязкости – переносом импульса;

2) все явления сопровождаются рассеянием энергии;

3) в механизме всех трех явлений большую роль играет средняя длина свободного пробега á l ñ.

Сравним формулы, которые описывают явления переноса (табл. 2.1). Из формул вытекают простые зависимости между l, D иh:

h = r D (2.13)

; . (2.14)

Таблица 2.1







Дата добавления: 2014-11-10; просмотров: 1384. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия