Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Принцип максимума Понтрягина. Экономия управления





При решении задач оптимизации на основе принципа максимума, управляющее воздействие ищется среди решений некоторой системы дифференциальных уравнений, в формировании которой используется система дифференциальных уравнений описывающая объект управления и выражение для интегрального критерия качества.

В настоящем разделе рассмотрим задачу экономии управления, т.е. задачу перевода объекта управления из заданного начального состояние в заданное конечное состояние за заданное время таким образом, чтобы минимизировать некоторую меру затрат управляющего воздействия. Под мерой затрат управления будем понимать интеграл от положительно определенной формы управляющих воздействий. В простейшем случае скалярного управления мера затрат имеет следующий вид:

(4.1)

где - заданное время управления.

Допустим, что объект управления описывается следующей системой дифференциальных уравнений:

(4.2)

Тогда первым шагом в решении задачи определения управляющего воздействия является запись функции Гамильтона:

(4.3)

где - переменные некоторой системы дифференциальных уравнений (системы сопряженных уравнений)

На втором шаге определяется зависимость оптимального управляющего воздействия от переменных сопряженной системы уравнений. Понтрягиным было доказано, что при величина функции Гамильтона имеет максимум.

Следовательно, для определения зависимости оптимального управления от переменных сопряженной системы уравнений можно использовать следующее уравнение:

или

или

(4.4)

На третьем шаге формируется система сопряженных уравнений:

или

(4.5)

Выполненные шаги позволяют сформировать систему дифференциальных уравнений, среди решений которой находится искомое управляющее воздействие:

(4.6)

Определение требуемого решения системы уравнений (4.6) может быть выполнено либо аналитическим методом, либо с помощью численных методов решения дифференциальных уравнений и поиском начальных условий для .

Аналитическое решение может быть получено с помощью функции DSOLVE из раздела символьных вычислений MATLAB:

Файл Main4_1.m

S=dsolve('Dx1=x2', 'Dx2=0.5*Ksi2', 'DKsi1=0', 'DKsi2=-Ksi1', 'x1(0)=1', 'x2(0)=0', 'x1(2)=0', 'x2(2)=0')

Результатом работы приведенного выше скрипта является MATLAB – структура, поля которой имеют следующие символьные значения:

S.x1=”1/4*t^3-3/4*t^2+1”

S.x2=”3/4*t^2-3/2*t”

S.Ksi1=”-3”

S.Ksi2=”3*t-3”

Поскольку нам известно выражение (4.4) то информация, полученная в структуре S позволяет получить искомое управляющее воздействие в виде функции времени:

Правильность полученного выражения может быть проверена путем численного решения уравнений объекта управления (4.2) средствами MATLAB:

Файл Main4_1.m

[t, x]=ode45('odefun4_2', [0 2], [1 0 -3 -3]);

plot(t, x(:, 1), 'r', t, x(:, 2), 'g', t, 0.5*x(:, 4), 'b')

Файл odefun4_2.m

function f=odefun4_2(t, x)

f=[x(2); 0.5*x(4); 0; -x(3)];

Графики переходных процессов показывают, что необходимые условия задачи выполнены, т.е. объект управления переводится из заданной начальной точки в заданную конечную точку за заданное время. Минимум расхода управления гарантируется тем, что использованное для этого перевода управляющее воздействие является решением системы уравнений (4.6).

В некоторых случаях система уравнений (4.6) слишком сложна для аналитического решения. В этом случае определения оптимального управления выполняется численными методами. Суть этих методов состоит в поиске таких значений начальных условий для , при которых удовлетворяются конечные условия для .

Пример численного решения задачи оптимального управления средствами MATLAB приведен далее. Функция FMINSEARCH используется здесь для поиска таких значений начальных условий для , при которых минимизируется невязка между факическими и требуемыми значениями конечных условий для . Невязка вычисляется как сумма квадратов разности между фактическими и требуемыми значениями в момент окончания интервала управления.

Файл Main4_2.m

%Начальное приближение вектора начальных условий для поиска

Ksi0B=[1 1];

Ksi0=fminsearch('fmsfun4_2', Ksi0B)

Файл fmsfun4_2.m

function f=fmsfun4_2(Ksi0)

t=[];

x=[];

[t, x]=ode45('odefun4_2', [0 2], [1 0 Ksi0(1) Ksi0(2)]);

%вычисление невязки

f=x(length(t), 1)*x(length(t), 1)+x(length(t), 2)*x(length(t), 2);

% наблюдение за процессом поиска

plot(t, x(:, 1), 'r', t, 0.5*x(:, 4), 'g')

pause(0.5)

Файл odefun4_2.m

function f=odefun4_2(t, x)

%вычисление правых частей (4.6)

f=[x(2); 0.5*x(4); 0; -x(3)];

Сравнивая значения , полученные в программах Main4_1.m и Main4_2.m можно сделать вывод о правильности работы численного метода решения задачи оптимального управления.







Дата добавления: 2014-11-10; просмотров: 1580. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия