Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Функция просмотра элементов дерева





void View_Tree(Tree *p, int level) {

String str;

if (p) {

View_Tree (p -> right, level+1); // Правое поддерево

for (int i=0; i< level; i++) str = str + " ";

Form1-> Memo1-> Lines-> Add(str + IntToStr(p-> info));

View_Tree(p -> left, level+1); // Левое поддерево

}

}

Обращение к функции View будет иметь вид View(root, 0);

Вторым параметром функции является переменная, определяющая, на каком уровне (level) находится узел (у корня уровень «0»). Строка str используется для получения пробелов, необходимых для вывода значения на соответствующем уровне.

Удаление узла с заданным ключом из дерева поиска, сохраняя его свойства, выполняется в зависимости от того, сколько сыновей (потомков) имеет удаляемый узел.

1. Удаляемый узел является листом – просто удаляем ссылку на него. Приведем пример схемы удаления листа с ключом key:

2. Удаляемый узел имеет только одного потомка, т.е. из удаляемого узла выходит ровно одна ветвь. Пример схемы удаления узла key, имеющего одного сына:

3. Удаление узла, имеющего двух потомков, значительно сложнее рассмотренных выше. Если key – удаляемый узел, то его следует заменить узлом w, который содержит либо наибольший ключ (самый правый, у которого указатель Right равен NULL) в левом поддереве, либо наименьший ключ (самый левый, у которого указатель Left равен NULL) в правом поддереве.

Используя первое условие, находим узел w, который является самым правым узлом поддерева key, у него имеется только левый потомок:

Функция удаления узла по заданному ключу key может иметь вид

Tree* Del_Info(Tree *root, int key) {

Tree *Del, *Prev_Del, *R, *Prev_R;

// Del, Prev _ Del – удаляемый узел и его предыдущий (предок);

// R, Prev _ R – элемент, на который заменяется удаленный, и его предок;

Del = root;

Prev_Del = NULL;

//-------- Поиск удаляемого элемента и его предка по ключу key ---------

while (Del! = NULL & & Del -> info! = key) {

Prev_Del = Del;

if (Del-> info > key) Del = Del-> left;

else Del = Del-> right;

}

if (Del == NULL) { // Элемент не найден

ShowMessage (" NOT Key! ");

return root;

}

//-------------------- Поиск элемента R для замены --------------------------------

if (Del -> right == NULL) R = Del-> left;

else

if (Del -> left == NULL) R = Del-> right;

else {

//---------------- Ищем самый правый узел в левом поддереве -----------------

Prev_R = Del;

R = Del-> left;

while (R-> right! = NULL) {

Prev_R = R;

R = R-> right;

}

//----------- Нашли элемент для замены R и его предка Prev _ R -------------

if(Prev_R == Del) R-> right = Del-> right;

else {

R-> right = Del-> right;

Prev_R-> right = R-> left;

R-> left = Prev_R;

}

}

if (Del== root) root = R; // Удаляя корень, заменяем его на R

else

//------- Поддерево R присоединяем к предку удаляемого узла -----------

if (Del-> info < Prev_Del-> info)

Prev_Del-> left = R; // На левую ветвь

else Prev_Del-> right = R; // На правую ветвь

delete Del;

return root;

}

Поиск узла с минимальным (максимальным) ключом:

Tree* Min_Key(Tree *p) { // Tree* Max_Key(Tree *p)

while (p-> left! = NULL) p = p-> left; // p=p-> right;

return p;

}

Тогда для получения минимального ключа p_min -> info:

Tree *p_min = Min_Key(root);

 

Построение сбалансированного дерева поиска для заданного (созданного) массиваключей «а» можно осуществить, если этот массив предварительно отсортирован в порядке возрастания ключа, с помощью следующей рекурсивной процедуры (при обращении n = 0, k – размер массива):

void Make_Blns(Tree **p, int n, int k, int *a) {

if (n == k) { *p = NULL;

return;

}

else {

int m=(n+k)/2;

*p = new Tree;

(*p)-> info = a[m];

Make_Blns(& (*p)-> left, n, m, a);

Make_Blns(& (*p)-> right, m+1, k, a);

}

}







Дата добавления: 2014-11-10; просмотров: 919. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия