Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Функция просмотра элементов дерева





void View_Tree(Tree *p, int level) {

String str;

if (p) {

View_Tree (p -> right, level+1); // Правое поддерево

for (int i=0; i< level; i++) str = str + " ";

Form1-> Memo1-> Lines-> Add(str + IntToStr(p-> info));

View_Tree(p -> left, level+1); // Левое поддерево

}

}

Обращение к функции View будет иметь вид View(root, 0);

Вторым параметром функции является переменная, определяющая, на каком уровне (level) находится узел (у корня уровень «0»). Строка str используется для получения пробелов, необходимых для вывода значения на соответствующем уровне.

Удаление узла с заданным ключом из дерева поиска, сохраняя его свойства, выполняется в зависимости от того, сколько сыновей (потомков) имеет удаляемый узел.

1. Удаляемый узел является листом – просто удаляем ссылку на него. Приведем пример схемы удаления листа с ключом key:

2. Удаляемый узел имеет только одного потомка, т.е. из удаляемого узла выходит ровно одна ветвь. Пример схемы удаления узла key, имеющего одного сына:

3. Удаление узла, имеющего двух потомков, значительно сложнее рассмотренных выше. Если key – удаляемый узел, то его следует заменить узлом w, который содержит либо наибольший ключ (самый правый, у которого указатель Right равен NULL) в левом поддереве, либо наименьший ключ (самый левый, у которого указатель Left равен NULL) в правом поддереве.

Используя первое условие, находим узел w, который является самым правым узлом поддерева key, у него имеется только левый потомок:

Функция удаления узла по заданному ключу key может иметь вид

Tree* Del_Info(Tree *root, int key) {

Tree *Del, *Prev_Del, *R, *Prev_R;

// Del, Prev _ Del – удаляемый узел и его предыдущий (предок);

// R, Prev _ R – элемент, на который заменяется удаленный, и его предок;

Del = root;

Prev_Del = NULL;

//-------- Поиск удаляемого элемента и его предка по ключу key ---------

while (Del! = NULL & & Del -> info! = key) {

Prev_Del = Del;

if (Del-> info > key) Del = Del-> left;

else Del = Del-> right;

}

if (Del == NULL) { // Элемент не найден

ShowMessage (" NOT Key! ");

return root;

}

//-------------------- Поиск элемента R для замены --------------------------------

if (Del -> right == NULL) R = Del-> left;

else

if (Del -> left == NULL) R = Del-> right;

else {

//---------------- Ищем самый правый узел в левом поддереве -----------------

Prev_R = Del;

R = Del-> left;

while (R-> right! = NULL) {

Prev_R = R;

R = R-> right;

}

//----------- Нашли элемент для замены R и его предка Prev _ R -------------

if(Prev_R == Del) R-> right = Del-> right;

else {

R-> right = Del-> right;

Prev_R-> right = R-> left;

R-> left = Prev_R;

}

}

if (Del== root) root = R; // Удаляя корень, заменяем его на R

else

//------- Поддерево R присоединяем к предку удаляемого узла -----------

if (Del-> info < Prev_Del-> info)

Prev_Del-> left = R; // На левую ветвь

else Prev_Del-> right = R; // На правую ветвь

delete Del;

return root;

}

Поиск узла с минимальным (максимальным) ключом:

Tree* Min_Key(Tree *p) { // Tree* Max_Key(Tree *p)

while (p-> left! = NULL) p = p-> left; // p=p-> right;

return p;

}

Тогда для получения минимального ключа p_min -> info:

Tree *p_min = Min_Key(root);

 

Построение сбалансированного дерева поиска для заданного (созданного) массиваключей «а» можно осуществить, если этот массив предварительно отсортирован в порядке возрастания ключа, с помощью следующей рекурсивной процедуры (при обращении n = 0, k – размер массива):

void Make_Blns(Tree **p, int n, int k, int *a) {

if (n == k) { *p = NULL;

return;

}

else {

int m=(n+k)/2;

*p = new Tree;

(*p)-> info = a[m];

Make_Blns(& (*p)-> left, n, m, a);

Make_Blns(& (*p)-> right, m+1, k, a);

}

}







Дата добавления: 2014-11-10; просмотров: 919. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Studopedia.info - Студопедия - 2014-2026 год . (0.007 сек.) русская версия | украинская версия