Студопедия — МОДЕЛИРОВАНИЕ СЛУЧАЙНОЙ ВЕЛИЧИНЫ, ПОДЧИНЕННОЙ НОРМАЛЬНОМУ ЗАКОНУ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

МОДЕЛИРОВАНИЕ СЛУЧАЙНОЙ ВЕЛИЧИНЫ, ПОДЧИНЕННОЙ НОРМАЛЬНОМУ ЗАКОНУ






Закон нормального распределения вероятностей непрерывной случайной величины занимает особое место среди различных теоретических законов, т. к. является основным во многих практических исследованиях, им описывается большинство случайных явлений, связанных с производственными процессами.

К случайным явлениям, подчиняющимся нормальному закону распределения, относятся ошибки измерений производственных параметров, распределение технологических погрешностей изготовления, рост и вес большинства биологических объектов, распределение параметров пленочных резисторов и др.

Нормальным называют закон распределения вероятностей непрерывной случайной величины, который описывается дифференциальной функцией

(6.5)

где

a - математическое ожидание случайной величины;

-среднее квадратичное отклонение нормального распределения.

График дифференциальной функции нормального распределения называют нормальной кривой (кривой Гаусса) (рис. 6.7).


Рис. 6.7.

Свойства нормальной кривой (кривой Гаусса):

  1. Кривая симметрична относительно прямой x = a.
  2. Нормальная кривая расположена над осью X, т. е. при всех значениях X функция f(x) всегда положительна.
  3. Ось X является горизонтальной асимптотой графика, т. к.

  1. При x = a функция f(x) имеет максимум равный

  1. В точках A и B при и кривая имеет точки перегиба, ординаты которых равны.

При этом, вероятность того, что абсолютная величина отклонения случайной величины, распределенной нормально, от ее математического ожидания не превысит среднего квадратичного отклонения , равна 0,6826.

  1. В точках E и G, при и значение функции f(x) равно

а вероятность того, что абсолютная величина отклонения случайной величины, распределенной нормально, от ее математического ожидания не превысит удвоенного среднего квадратичного отклонения, равна 0,9544.

  1. Асимптотически приближаясь к оси абсцисс, кривая Гаусса в точках C и D, при и , очень близко подходит к оси абсцисс. В этих точках значение функции f(x) очень мало

а вероятность того, что абсолютная величина отклонения случайной величины, распределенной нормально, от ее математического ожидания не превысит утроенного среднего квадратичного отклонения, равна 0,9973. Это свойство кривой Гаусса называется "правило трех сигм".

Изменение величины параметра a (математического ожидания случайной величины) не изменяет форму нормальной кривой, а приводит лишь к ее смещению вдоль оси X: вправо, если a возрастает, и влево, если a убывает.

При a=0 нормальная кривая симметрична относительно оси ординат.

Изменение величины параметра (среднего квадратичного отклонения) изменяет форму нормальной кривой: с возрастанием ординаты нормальной кривой убывают, кривая растягивается вдоль оси X и прижимается к ней. При убывании ординаты нормальной кривой увеличиваются, кривая сжимается вдоль оси X и становится более "островершинной".

При этом, при любых значениях и площадь ограниченная нормальной кривой и осью X, остается равной единице (т. е. вероятность того, что случайная величина, распределенная нормально, примет значение ограниченное на оси X нормальной кривой, равна 1).

Нормальное распределение с произвольными параметрами и т. е. описываемое дифференциальной функцией

называется общим нормальным распределением.

Нормальное распределение с параметрами и , т. е. описываемое дифференциальной функцией

(6.6)

называется нормированным распределением (рис. 6.8). В нормированном распределении дифференциальная функция распределения равна:


Рис. 6.8.

Интегральная функция общего нормального распределения имеет вид:

(6.7)

Интегральная функция нормированного распределения имеет вид:

(6.8)

где

Пусть случайная величина X распределена по нормальному закону в интервале (c, d). Тогда вероятность того, что X примет значение, принадлежащее интервалу (c, d) равна

Пронормируем это выражение. Для этого введем новую переменную z

Откуда: .

Новые пределы интегрирования:

Для

для

Тогда, после нормирования, вероятность того, что случайная величина X примет значение, принадлежащее интервалу (c, d) равна

Пользуясь функцией Лапласа (функция табулирована)

окончательно получим

Пример.

Случайная величина X распределена по нормальному закону. Математическое ожидание и среднее квадратичное отклонение этой случайной величины равны a=30 и Найти вероятность того, что X примет значение в интервале (10, 50).

Решение:

По условию: .

Тогда

Пользуясь готовыми таблицами Лапласа, имеем:

Отсюда .








Дата добавления: 2015-04-16; просмотров: 813. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия