Студопедия — Определение. Выражение называется главным значением логарифма
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение. Выражение называется главным значением логарифма






 

Логарифмическая функция комплексного аргумента обладает следующими свойствами:

1)

2)

3)

4)

 

Обратные тригонометрические функции комплексного переменного имеют вид:

 

 

Производная функций комплексного переменного.

 

Определение. Производной от однозначной функции w = f(z) в точке z называется предел:

 

Определение. Функция f(z), имеющая непрерывную производную в любой точке области D называется аналитической функцией на этой области.

 

Правила дифференцирования функций комплексного аргумента не отличаются от правил дифференцирования функций действительной переменной.

Аналогично определяются производные основных функций таких как синус, косинус, тангенс и котангенс, степенная функция и т.д.

Производные гиперболических функций определяются по формулам:

 

 

Вывод правил интегрирования, значений производных основных функций ничем не отличается от аналогичных операций с функциями действительного аргумента, поэтому подробно рассматривать их не будем.

 

 

Условия Коши – Римана.

(Бернхард Риман (1826 – 1866) – немецкий математик)

 

Рассмотрим функцию комплексной переменной , определенную на некоторой области и имеющую в какой – либо точке этой области производную

 

Стремление к нулю Dz®0 может осуществляться в следующих случаях:

 

1)

2)

 

В первом случае:

 

 

Во втором случае:

 

 

Тогда должны выполняться равенства:

 

Эти равенства называются условиями Коши – Римана, хотя еще раньше они были получены Эйлером и Даламбером.

 

Теорема. Если функция имеет производную в точке

z = x + iy, то ее действительные компоненты u и v имеют в точке (х, у) частные производные первого порядка, удовлетворяющие условию Коши – Римана.

 

Также справедлива и обратная теорема.

На основании этих теорем можно сделать вывод, что из существования производной следует непрерывность функции.

 

Теорема. Для того, чтобы функция была аналитической на некоторой области необходимо и достаточно, чтобы частные производные первого прядка функций u и v были непрерывны на этой области и выполнялись условия Коши – Римана.

 

 

Интегрирование функций комплексной переменной.

 

Пусть - непрерывная функция комплексного переменного z, определенная в некоторой области и L – кривая, лежащая в этой области.

у

 

В

L

 

А

х

 

Кривая L задана уравнением

 

Определение. Интеграл от функции f(z) вдоль кривой L определяется следующим образом:

 

Если учесть, что , то

 

Теорема. (Теорема Коши) Если f(z) - аналитическая функция на некоторой области, то интеграл от f(z) по любому кусочно – гладкому контуру, принадлежащему этой области равен нулю.

 

 

Интегральная формула Коши.

 

Если функция f(z) – аналитическая в односвязной замкнутой области с кусочно – гладкой границей L.

 

D

 

r

z0

 

Тогда справедлива формула Коши:

 

где z0 – любая точка внутри контура L, интегрирование по контуру производится в положительном направлении (против часовой стрелки).

 

Эта формула также называется интегралом Коши.

 

 

Ряды Тейлора и Лорана.

(Пьер Альфонс Лоран (1813 – 1854) – французский математик)

 

Функция f(z), аналитическая в круге , разлагается в сходящийся к ней степенной ряд по степеням (z – z0).

 

Коэффициенты ряда вычисляются по формулам:

 

Степенной ряд с коэффициентами такого вида называется рядом Тейлора.

 

Рассмотрим теперь функцию f(z), аналитическую в кольце . Эта функция может быть представлена в виде сходящегося ряда:

 

Ряд такого вида называется рядом Лорана. При этом функция f(z) может быть представлена в виде суммы:

 

Ряд, определяющий функцию f1( x), называется правильной частью ряда Лорана, а ряд, определяющий функцию f2(x), называется главной частью ряда Лорана.

 

Если предположить, что r = 0, то можно считать, что функция аналитична в открытом круге за исключением центральной точки z0. Как правило, в этой точке функция бывает не определена.

 

Тогда точка z0 называется изолированной особой точкой функции f.

 

Рассмотрим следующие частные случаи:

 

1) Функция f(x) имеет вид: . Т.к. степенной ряд сходится во всех точках внутри круга, то его сумма f1(x) определена и непрерывно дифференцируема во всех точках круга, а, следовательно, и в центре круга z0.

В этом случае говорят, что особенность функции f в точке z0 устранима. Для устранения особой точки достаточно доопределить функцию в центре круга (f(z0) = c0) и функция будет аналитической не только в окрестности центра круга, но и в самом центре.

В этом случае для любого контура L, содержащего точку z0 и принадлежащего к кругу .

 

2) Функция f(x) имеет вид: .

В этом случае точка z0 называется полюсом функции f(z) порядка (кратности) m. При m = 1 точку z0 называют еще простым полюсом.

Порядок полюса может быть определен по формуле:

z0 – полюс порядка т.

3) Функция f(z) имеет вид , где в ряду не равно нулю бесконечное количество коэффициентов с-k.

В этом случае говорят, что функция f(z) имеет в точке z0 существенно особую точку.

 

 

Определение. Пусть z0 – изолированная особая точка функция f(z), т.е. пусть функция f(z) – аналитическая в некотором круге из которого исключена точка z0. Тогда интеграл

называется вычетом функции f(z) в точке z0, где L – контур в круге , ориентированный против часовой стрелки и содержащей в себе точку z0.

 

Вычет также обозначают иногда .

 

Если есть ряд Лорана функции f в точке z0, то .

Таким образом, если известно разложение функции в ряд Лорана, то вычет легко может быть найден в случае любой особой точки.

 

В частных случаях вычет может быть найден и без разложения в ряд Лорана.

 

Например, если функция , а имеет простой нуль при z = z0 , то z = z0 является простым полюсом функции f(z).

 

Тогда можно показать, что вычет находится по формуле

 

Если z = z0 – полюс порядка m ³ 1, то вычет может быть найден по формуле:

 

 

Пример. Найти вычет функции относительно точки z = 2.

 

Эта точка является полюсом второго порядка. Получаем:

 

 

Теорема о вычетах.

 

Теорема. Пусть функция f(z) – аналитическая на всей плоскости z, за исключением конечного числа точек z1, z2, …, zN. Тогда верно равенство:

 

А интеграл от функции по контуру L, содержащему внутри себя эти точки, равен

 

Эти свойства применяются для вычисления интегралов. Если функция f(z) аналитическая в верхней полуплоскости, включая действительную ось, за исключением N точек, то справедлива формула

 

Пример. Вычислить определенный интеграл .

 

Подынтегральная функция является аналитической в верхней полуплоскости за исключением точки 2i. Эта точка является полюсом второго порядка.

Найдем вычет функции

Получаем

 

Пример. Вычислить определенный интеграл

 

Подынтегральная функция является аналитической в верхней полуплоскости за исключением точки i. Эта точка является полюсом второго порядка.

Найдем вычет функции

Получаем

 

 







Дата добавления: 2015-04-16; просмотров: 529. Нарушение авторских прав; Мы поможем в написании вашей работы!



Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия