Студопедия — МЕТОДЫ МНОГОМЕРНОЙ ОПТИМИЗАЦИИ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

МЕТОДЫ МНОГОМЕРНОЙ ОПТИМИЗАЦИИ

МЕТОДЫ МНОГОМЕРНОЙ ОПТИМИЗАЦИИ

Смысл методов нахождения безусловного экстремума функции нескольких переменных заключается в том, что по определенному правилу выбирается последовательность значений { xi } вектора x такая, что Q (xl+1)≤(≥) Q (xl). Так как целевая функция предполагается ограниченной, то такая последовательность ее значений стремится к пределу. В зависимости от принятого алгоритма и выбора начальной точки этим пределом может быть локальный или глобальный экстремум функции Q(x).

Метод Гаусса-Зайделя. Метод заключается в последовательном определении экстремума функции одной переменной с точностью до ε вдоль каждой координаты, т.е. фиксируются все координаты, кроме одной, по которой и осуществляется поиск экстремума Q. Потом та же процедура осуществляется при фиксации следующей координаты. После рассмотрения всех n координат выполняется возврат к первой и вновь производится поиск локального экстремума вдоль каждой из n координат до тех пор, пока экстремум не будет локализован с заданной точностью.

Метод градиента. В этом методе используется градиент целевой функции, шаги совершаются по направлению наибыстрейшего уменьшения целевой функции, что, естественно, ускоряет процесс поиска оптимума. Идея метода заключается в том, что находятся значения частных производных по всем независимым переменным – ∂Q/∂xi, которые определяют направление градиента в рассматриваемой точке , и осуществляется шаг в направлении обратном направлению градиента, т.е. в направлении наибыстрейшего убывания целевой функции (если ищется минимум). Итерационный процесс имеет вид

,

где параметр αk ≥ 0 задает длину шага.

Алгоритм метода градиента включает в себя следующие шаги.

1. Задается начальное значение вектора независимых переменных , определяющего точку, из которой начинается движение к минимуму.

2. Рассчитывается значение целевой функции в начальной точке .

3. Определяется направление градиента в начальной точке.

4. Делается шаг в направлении антиградиента при поиске минимума, в результате чего попадают в точку x1.

5. Процесс поиска продолжается, повторяя все этапы с п. 2, т.е. вычисляется , определяется направление градиента в точке x1, делается шаг и т.д.

Важной задачей в этом методе является выбор шага. Если размер шага слишком мал, то движение к оптимуму будет долгим из-за необходимости расчета целевой функции и ее частных производных в очень многих точках. Если же шаг будет выбран слишком большим, то в районе оптимума может возникнуть "рыскание", которое либо затухает слишком медленно, либо совсем не затухает. На практике сначала шаг выбирается произвольно. Если окажется, что направление градиента в точке x1 существенно отличается от направления в точке x2, то шаг уменьшают, если отличие векторов по направлению мало, то шаг увеличивают. Изменение направления градиента можно определять по углу поворота градиента рассчитываемого на каждом шаге по соответствующим выражениям.

Итерационный процесс поиска прекращается, если выполняются неравенства , где ε;, δ;, γ; – заданные числа.

Недостатком градиентного метода является то, что при его использовании можно обнаружить только локальный минимум целевой функции. Для нахождения других локальных минимумов поиск необходимо производить из других начальных точек.

 

Метод наискорейшего спуска. При применении метода градиента на каждом шаге вычисляются значения всех частных производных оптимизируемой функции Q по всем независимым переменным U, что при большом числе этих переменных приводит к весьма большому времени поиска оптимума. Сократить время поиска позволяет метод наискорейшего спуска, блок-схема которого представлена на рис. 5, где ε – точность вычисления, H – величина шага, n – размерность вектора u, Q – алгоритм вычисления целевой функции Q(u), L – количество шагов по конкретному направлению градиента функции Q.

Рис. 5. Блок-схема метода наискорейшего спуска.

Таким образом, в начальной точке u0 определяется градиент целевой функции и, следовательно, направление ее наибыстрейшего убывания; далее делается шаг спуска в этом направлении. Если значение целевой функции уменьшились, то делается следующий шаг в этом же самом направлении. Процедура повторяется до тех пор, пока в этом направлении не будет найден минимум, после чего только вычисляется градиент и определяется новое направление наибыстрейшего убывания целевой функции.

По сравнению с методом градиента метод наискорейшего спуска оказывается более выгодным из-за сокращения объема вычислений. Чем менее резко изменяется направление градиента целевой функции, тем выгоднее использовать метод наискорейшего спуска, т.е. вдали от оптимума. Вблизи оптимума рассматриваемый метод автоматически переходит в метод градиента. Окончание поиска происходит в соответствии с теми же критериями, что и в методе градиента.

 




<== предыдущая лекция | следующая лекция ==>
Введение. Направляется призывник_____________________________________________________________ | Введение. Облік розрахунків з оплати праці (тема №3)

Дата добавления: 2015-03-11; просмотров: 737. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия