Студопедия — Монотонные функции
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Монотонные функции






 

Функция f строго возрастает (возрастает) на множестве Х:

Функция f возрастает (не убывает) на множестве Х:

Функция f строго убывает (убывает) на множестве Х:

Функция f убывает (не возрастает) на множестве Х:

На показанном на рисунке графике функция y = f (x), возрастает на каждом из промежутков [ a; x 1) и (x 2; b ] и убывает на промежутке (x 1; x 2). Обратите внимание, что функция возрастает на каждом из промежутков [ a; x 1) и (x 2; b ], но не на объединении промежутков

Если функция возрастает или убывает на некотором промежутке, то она называется монотонной на этом промежутке.

Заметим, что если f – монотонная функция на промежутке D (f (x)), то уравнение f (x) = const не может иметь более одного корня на этом промежутке.

Действительно, если x 1 < x 2 – корни этого уравнения на промежутке D (f (x)), то f (x 1) = f (x 2) = 0, что противоречит условию монотонности.

Перечислим свойства монотонных функций (предполагается, что все функции определены на некотором промежутке D).

1. Сумма нескольких возрастающих функций является возрастающей функцией.

2. Произведение неотрицательных возрастающих функций есть возрастающая функция.

3. Если функция f возрастает, то функции cf (c > 0) и f + c также возрастают, а функция cf (c < 0) убывает. Здесь c – некоторая константа.

4. Если функция f возрастает и сохраняет знак, то функция 1/ f убывает.

5. Если функция f возрастает и неотрицательна, то где , также возрастает.

6. Если функция f возрастает и n – нечетное число, то f n также возрастает.

7. Композиция g (f (x)) возрастающих функций f и g также возрастает.

Аналогичные утверждения можно сформулировать и для убывающей функции.

Ø Точка a называется точкой максимума функции f, если существует такая ε-окрестность точки a, что для любого x из этой окрестности выполняется неравенство f (a) ≥ f (x).

Ø Точка a называется точкой минимума функции f, если существует такая ε-окрестность точки a, что для любого x из этой окрестности выполняется неравенство f (a) ≤ f (x).

Точки, в которых достигается максимум или минимум функции, называются точками экстремума.

В точке экстремума происходит смена характера монотонности функции. Так, слева от точки экстремума функция может возрастать, а справа – убывать. Согласно определению, точка экстремума должна быть внутренней точкой области определения.

Если для любого (xa) выполняется неравенство f (x) ≤ f (a) то точка a называется точкой наибольшего значения функции на множестве D:

Если для любого (xb) выполняется неравенство f (x) > f (b) то точка b называется точкой наименьшего значения функции на множестве D.

Точка наибольшего или наименьшего значения может быть экстремумом функции, но не обязательно им является.

Точку наибольшего (наименьшего) значения непрерывной на отрезке функции следует искать среди экстремумов этой функции и ее значений на концах отрезка.

№15Локальный экстремум. Достаточные критерии локальных экстремумов.

Экстре́мум- максимальное или минимальное значение функции на заданном множестве.

Достаточное условие точки локального экстремума.

· 1) Пусть функция непрерывна в и существуют конечные или бесконечные односторонние производные. Тогда при условии является точкой строгого локального максимума. А если то является точкой строгого локального минимума.Заметим, что при этом функция не дифференцируема в точке

· Пусть функция непрерывна и дважды дифференцируема в точке. Тогда при условии и является точкой локального максимума. А если и то является точкой локального минимума.

· Пусть функция дифференцируема раз в точке и, а.

Если чётно и, то - точка локального максимума. Если чётно и, то - точка локального минимума. Если нечётно, то экстремума нет.

№17Теоремы о среднем значении.

 

 

 

№18.Формула Тейлора.

См в лекции.

 

№19.Раскрытие неопределённостей с помощью формулы Тейлора и правила Лопиталя-Бернулли.

 

 







Дата добавления: 2015-04-19; просмотров: 468. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия