Студопедия — Важнейшие границы теории кодирования
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Важнейшие границы теории кодирования






 

Значительная часть работ по теории кодирования посвящена установлению и исследованию различных границ для кодов и, в частности, границ для кодового расстояния. Указанные границы представляют собой ориентиры, позволяющие объективно судить, насколько успешно решены задачи построения кодов. Наиболее важными и полезными границами кодового расстояния являются границы Хэмминга, Плоткина и Гильберта.

Теорема 5.6.1. (Граница Хэмминга). Для любого двоичного кода, содержащего кодовых слов длины и исправляющего (и менее) ошибок, выполняется соотношение

, (5.6)

где – биномиальный коэффициент.

Иным вариантом представления границы может служить соотношение

,

устанавливающее минимальное число проверочных символов, необходимое для обеспечения требуемой корректирующей способности.

Доказательство. Вычислим «объем» сферы радиуса , изображенной на рис. 5.3, т.е. определим число точек, находящихся внутри сферы,

.

Требование однозначного декодирования означает, что сферы не должны пересекаться, и значит, общий объем, создаваемый всеми сферами, будет . Поскольку при длине кодового слова всего может существовать векторов наблюдения , то , что и завершает доказательство.

Коды, для которых достигается равенство в границе Хэмминга, называются совершенными. Совершенные коды исправляют любую ошибку кратности и менее, но не исправляют и не обнаруживают ни одной ошибки большей кратности. Геометрически эти коды воплощают т. н. «плотную упаковку», когда все двоичных векторов охвачены сферами радиуса без пересечения и свободного пространства. В этой связи совершенные коды также называют плотно упакованными или сферически упакованными. Их совершенство заключается в достижении максимально возможной скорости при фиксированных и . Среди двоичных кодов известны три класса совершенных кодов – тривиальный код с повторением нечетной длины, коды Хэмминга, исправляющие любую однократную ошибку, и код Голея длины 23 и кодовым расстоянием 7 (исправляет любую 3–кратную ошибку и менее).

Коды, исправляющие любые ошибки кратности до включительно, а также некоторые ошибки кратности , и не исправляющие никаких ошибок большей кратности, называются квазисовершенными кодами.

Примером квазисовершенного кода может служить расширенный код Хэмминга с параметрами , получаемого из совершенного кода Хэмминга добавлением еще одного проверочного символа путем простой проверки на четность.

Теорема 5.6.2. (Граница Плоткина). Для любого двоичного блокового кода с параметрами выполняется неравенство

. (5.7)

Применяя границу Плоткина (5.7), достаточно просто определить максимально возможное значение кодового расстояния при заданных и , однако задача усложняется, если использовать ее для определения максимального значения (а значит, и скорости ) при фиксированных и . В связи с этим находит широкое применение и другой вариант границы Плоткина.

Теорема 5.6.3. Для любого двоичного блокового кода с параметрами выполняется неравенство

(5.8)

Рассмотрим теперь примеры, иллюстрирующие область применения границ (5.6), (5.8).

Пример 5.6.1. Определить возможный объем и скорость кода с параметрами и .

Согласно границе Хэмминга (5.6)

,

тогда как из границы Плоткина (5.8) получаем

,

и, значит, более точную оценку дает граница Хэмминга. Отсюда

.

Пример 5.6.2. Определить возможный объем и скорость кода с параметрами и .

Действуя аналогично примеру 5.6.2, получаем следующие оценки мощности кода:

– из границы Хэмминга получаем ;

– из границы Плоткина – ,

и, следовательно, .

Из рассмотренных примеров следует, что граница Хэмминга дает лучший результат для высокоскоростных кодов, тогда как граница Плоткина – для низкоскоростных. Обе границы определяют необходимые (но не достаточные) условия существования блоковых кодов. Не выполнение их свидетельствует о невозможности построения кода с заданными значениями . Вследствие этого указанные границы часто называют верхними. Известны более точные, однако и более сложные границы для всего диапазона значений , примером чего может служить граница Элайеса. Существуют и нижние границы, устанавливающие достаточные условия существования кодов с заданными значениями .

Теорема 5.6.3. (Граница Гильберта). Наверняка существует двоичный блоковый код, параметры которого удовлетворяют неравенству

. (5.9)

Замечание. Если целое число, то существует более строгий вариант границы (5.9), называемый границей Варшамова–Гильберта

. (5.10)

Пример 5.6.3. При каком значении наверняка существует двоичный код с параметрами, заданными в примерах 5.6.1–5.6.2.

Из (5.10) непосредственно получаем:

– для примера 5.6.1:

.

– для примера 5.6.2:

.

Таким образом, диапазон возможных значений , для которых не отрицается существование указанных двоичных блоковых кодов, определен следующими интервалами:

– для 5.6.1 –

– для 5.6.2 – .

Значительный интерес представляют асимптотические (при ) версии приведенных ранее нижних и верхних границ, определяющие условия существования блоковых кодов в терминах скорости и относительного кодового расстояния . Используя аппроксимацию биномиального коэффициента с помощью формулы Стирлинга, границы Хэмминга и Плоткина преобразуются к виду

и , (5.11)

а граница Гильберта принимает вид

, (5.12)

где, как и ранее, – энтропия двоичного ансамбля.

Рис. 5.4 служит графической иллюстрацией асимптотических границ (5.11–5.12). Область, лежащая выше хотя бы одной из границ (5.11), отвечает тем значениям , при которых не существуют коды с указанными параметрами. Не составляет труда определить, что точка пересечения границ Хэмминга и Плоткина, устанавливающая диапазон использования соответствующей границы, отвечает значению . С другой стороны, те значения , которые соответствуют области, лежащей ниже границы Гильберта, гарантируют существование кода. Область, лежащая между двумя упомянутыми зонами, отвечает неопределенной ситуации, для которой точный ответ о существовании кода не может быть дан на основании приведенных границ. Использование более точных границ, о которых упоминалось выше, позволит лишь
уменьшить зону неопределенности.







Дата добавления: 2015-04-19; просмотров: 2489. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия