Студопедия — Здесь вырван кусок (так было задумано)
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Здесь вырван кусок (так было задумано)






элементами, по-видимому, связана с образованием в перлитной области легированных феррита, цементита и даже специальных карбидов. Таким образом, процессы диффузии в легированных сталях более сложны и требуют большего времени. К тому же легирование уменьшает скорость превращения γ-железа в α-железо.

Промежуточное (бейнитное) превращение может идти быстро, так как диффузия легирующих элементов при этих температурах практически исключается и состав исходного аустенита и образующегося бейнита один и тот же.

 
 

Особенно сильно повышается устойчивость аустенита при одновременном легировании стали несколькими элементами. Например, в низкоуглеродистых сталях, содержащих хром, никель, вольфрам и молибден (18ХНВА и др.), перлитное превращение экспериментально не обнаруживается и аустенит превращается в бейнит и мартенсит. Легирующие элементы (кроме кобальта и алюминия) понижают температуру Мн (рис. 33), уменьшают критическую скорость закалки (кроме Со), и поэтому в некоторых высоколегированных сталях даже при охлаждении на воздухе образуется легированный мартенсит.

По диаграммам изотермического распада аустенита можно анализировать процессы фазовых превращений, происходящие при непрерывном охлаждении. Для этого на диаграмму (см. рис. 29) необходимо нанести кривые охлаждения, соответствующие различным режимам — скоростям охлаждения. Минимальная скорость охлаждения, при которой образуется только мартенсит, называется критической скоростью закалки. На диаграмме изотермического превращения аустенита (рис. 29,6) она характеризуется касательной к линии начала распада аустенита (в точке а3).

 

Превращения в закаленных сталях при отпуске.

 

Различают три вида превращений при отпуске, сопровождающиеся изменением объема (мартенсит имеет больший объем, чем другие структурные составляющие):

1. При первом превращении (80...200 °С) часть углерода выделяется в виде метастабилыюй фазы — ε-карбида с ГПУ решеткой и формулой, близкой к Fe2C. Пластинки Fe2C имеют толщину в несколько атомных слоев и когерентную связь с мартенситом. Прилегающий к карбидам мартенсит обедняется углеродом, тетрагональность его уменьшается, остальная часть мартенсита имеет прежние состав и тетрагональность.

2. При втором превращении (200...300 °С) распад мартенсита сопровождается распадом остаточного аустенита и перестройкой ε;-карбида в цементит. Распад мартенсита распространяется на весь объем, но даже при нагреве до температуры около 300 °С (в конце второго превращения) мартенсит все еще содержит 0,15...0,20% углерода. Распадается по диффузионному механизму и остаточный аустенит на смесь низкоуглеродистого мартенсита и дисперсных карбидов. Превращение Fe2CFe3C нарушает когерентность ре­шеток мартенсита и карбидов.

3. Третье превращение(300...400 °С). характеризуется полным переходом мартенсита отпуска в троостит отпуска — высокодисперсную зернистую механическую смесь феррита с цементитом. При 450...650 °С происходит коагуляция цементитных зерен в результате притока к ним углерода растворившихся мелких карбидов. Получаемая структура — дисперсная, зернистая — и представляет со­бой механическую смесь феррита с цементитом— сорбит отпуска.

В легированных сталях наблюдаются некоторые особенности превращения мартенсита при отпуске:

1. на первую стадию распада мартенсита легирующие элементы не оказывают существенного влияния.

2. при втором превращении мартенсита хром, ванадий, вольфрам, молибден, титан, тантал, кремний и другие легирующие элементы стабилизируют мартенсит, сдвигая его превращение в область более высоких температур. При этом они тормозят и распад остаточного аустенита.

3. третье превращение мартенсита и процессы укрупнения карбидов протекают при более высоких температурах, чем в углеродистых сталях, если легирующие эле­менты карбидообразующие. Но никель и кобальт ускоряют процесс роста карбидов. При высоких температурах происходит диффузионное перераспределение элементов: образуются легированные (специальные) карбиды, обедняется карбидообразующими и обогащается некарбидообразующими легирующими элементами - твердый раствор.

 







Дата добавления: 2015-06-12; просмотров: 350. Нарушение авторских прав; Мы поможем в написании вашей работы!



Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия