Студопедия — Чёрные дыры звёздных масс
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Чёрные дыры звёздных масс






Моделирование гравитационного линзирования чёрной дырой, которая искажает изображение галактики, перед которой она проходит. (Щёлкните, чтобы увидеть полноразмерную анимацию.)

Чёрная дыра NGC 300 X-1 в представлении художника. Иллюстрация ESO.

Чёрные дыры звёздных масс образуются как конечный этап жизни звезды, после полного выгорания термоядерного топлива и прекращения реакции звезда теоретически должна начать остывать, что приведёт к уменьшению внутреннего давления и сжатию звезды под действием гравитации. Сжатие может остановиться на определённом этапе, а может перейти в стремительный гравитационный коллапс. В зависимости от массы звезды и вращательного момента возможны следующие конечные состояния:

  • Погасшая очень плотная звезда, состоящая в основном, в зависимости от массы, из гелия, углерода, кислорода, неона, магния, кремния или железа (основные элементы перечислены в порядке возрастания массы остатка звезды). Такие остатки называют белыми карликами, масса их ограничивается сверху пределом Чандрасекара.
  • Нейтронная звезда, масса которой ограничена пределом Оппенгеймера — Волкова.
  • Чёрная дыра.

По мере увеличения массы остатка звезды происходит движение равновесной конфигурации вниз по изложенной последовательности. Вращательный момент увеличивает предельные массы на каждой ступени, но не качественно, а количественно (максимум в 2—3 раза).

Условия (главным образом, масса), при которых конечным состоянием эволюции звезды является чёрная дыра, изучены недостаточно хорошо, так как для этого необходимо знать поведение и состояния вещества при чрезвычайно высоких плотностях, недоступных экспериментальному изучению. Дополнительные сложности представляет моделирование звёзд на поздних этапах их эволюции из-за сложности возникающего химического состава и резкого уменьшения характерного времени протекания процессов. Достаточно упомянуть, что одни из крупнейших космических катастроф, вспышки сверхновых, возникают именно на этих этапах эволюции звёзд. Различные модели дают нижнюю оценку массы чёрной дыры, получающейся в результате гравитационного коллапса, от 2,5 до 5,6 масс Солнца. Радиус чёрной дыры при этом очень мал — несколько десятков километров.

Впоследствии чёрная дыра может разрастись за счёт поглощения вещества — как правило, это газ соседней звезды в двойных звёздных системах (столкновение чёрной дыры с любым другим астрономическим объектом очень маловероятно из-за её малого диаметра). Процесс падения газа на любой компактный астрофизический объект, в том числе и на чёрную дыру, называется аккрецией. При этом из-за вращения газа формируется аккреционный диск, в котором вещество разгоняется до релятивистских скоростей, нагревается и в результате сильно излучает, в том числе и в рентгеновском диапазоне, что даёт принципиальную возможность обнаруживать такие аккреционные диски (и, следовательно, чёрные дыры) при помощи ультрафиолетовых и рентгеновских телескопов. Основной проблемой является малая величина и трудность регистрации отличий аккреционных дисков нейтронных звёзд и чёрных дыр, что приводит к неуверенности в идентификации астрономических объектов с чёрными дырами. Основное отличие состоит в том, что газ, падающий на все объекты, рано или поздно встречает твёрдую поверхность, что приводит к интенсивному излучению при торможении, но облако газа, падающее на чёрную дыру, из-за неограниченно растущего гравитационного замедления времени (красного смещения) просто быстро меркнет при приближении к горизонту событий, что наблюдалось телескопом Хаббла в случае источника Лебедь X-1.

Столкновение чёрных дыр с другими звёздами, а также столкновение нейтронных звёзд, вызывающее образование чёрной дыры, приводит к мощнейшему гравитационному излучению, которое, как ожидается, можно будет обнаруживать в ближайшие годы при помощи гравитационных телескопов. В настоящее время есть сообщения о наблюдении столкновений в рентгеновском диапазоне]. 25 августа 2011 года появилось сообщение о том, что впервые в истории науки группа японских и американских специалистов смогла в марте 2011 года зафиксировать момент гибели звезды, которую поглощает чёрная дыра.







Дата добавления: 2015-08-30; просмотров: 1095. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Studopedia.info - Студопедия - 2014-2024 год . (0.014 сек.) русская версия | украинская версия