Студопедия — ДЕФОРМАЦИОННЫЕ ШВЫ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ДЕФОРМАЦИОННЫЕ ШВЫ

 

Линейно-упругая деформ явл по своей сути обратимым процессом, поэтому уравн нелинейной теории упругости не должны содержать времени, в следовательно и скорости нагруж и разгрузки тела

Упруго-пласти среда – это необратим процесс, завис от времени нагружения и след от скорости

1) Уравнения деформацион теории справедливы для изотроп тела, однако при пластич деформ большинства матер, с развит пластич дефор свойства матер становятся неодинак по всем направ

2) Деформацион теория требует чтобы матер наход в активном напряжен сост до начала деформ

3) Если матер наход в ненапряжен сост, то дефор должны быть малыми. Для процессов ОМД малые деф 1-6%

4) Значит ограничением явл требование о простом нагружении

 

ДЕФОРМАЦИОННЫЕ ШВЫ

7.220. Деформационные швы в стенах и перекрытиях каменных зданий устраиваются в целях устранения или уменьшения отрицательного влияния температурных и усадочных деформаций, осадок фундаментов, сейсмических воздействий и т. п.

7.221. Температурно-усадочные швы устраиваются в местах возможной концентрации температурных и усадочных деформаций, которые могут вызвать в конструкциях недопустимые по условиям эксплуатации и долговечности разрывы, трещины, а также перекосы и сдвиги кладки.

7.222. Расстояния между температурно-усадочными швами следует определять расчетом в соответствии с указаниями прил. 11.

Максимальные расстояния между температурно-усадочными швами в неармированных наружных стенах принимаются в соответствии с указаниями п. [6.79], без расчета на действие температуры и усадки.

Указанные в п. [6.79] расстояния могут быть увеличены путем армирования кладки стен по расчету.

Примечание. Разрезка зданий температурными швами в соответствии с требованиями п. [6.79] уменьшает, но не устраняет полностью температурные усилия в стенах и перекрытиях. Поэтому во всех случаях необходимо производить расчетную проверку на действие температуры и усадки отдельных узлов и сопряжении конструкций, в которых возможна концентрация температурных деформаций и напряжений. Проверка выполняется в соответствии с указаниями прил. 11.

7.223. Температурные швы в стенах зданий, имеющих протяженные (20 м и более) стальные или армированные бетонные включения или арматуру (балки, перемычки, плиты перекрытий, арматурные пояса и т. п.), устраивают по концам армированных участков и включений, где обычно происходят концентрация температурных деформаций и образование трещин и сквозных разрывов. Примеры устройства температурных швов в указанных случаях показаны на черт. 60.

7.224. Температурные швы в стенах могут не устраиваться при условии армирования кладки в местах обрыва арматуры или по концам включения по расчету в соответствии с указаниями прил. 11.

В зданиях с продольными несущими стенами и сборными перекрытиями, имеющих частую (через 1-2 м) разрезку поперечными швами (см. черт. 60, б), температурные швы при ширине проемов не более 2,5 м и отсутствии протяженных армированных включений могут не устраиваться, независимо от длины и этажности здания и климатических условий района застройки.

При этом раскрытие трещин в стенах и по концам армированных перемычек не должно превышать допустимых значений по табл. 1 прил. 11.

7.225. Конструкция температурных швов в стенах, перекрытиях и покрытиях каменных зданий должна удовлетворять следующим требованиям:

а) температурные швы в наружных и внутренних стенах, перекрытиях и покрытиях (крышах) зданий рекомендуется устраивать в одной плоскости на всю высоту здания, исключая фундаменты, разрезка которых является не обязательной; вопрос о разрезке швами только наружных или только внутренних стен решается отдельно при достаточном обосновании;

б) температурные швы в стенах должны совпадать со швами в железобетонных или стальных конструкциях (перекрытиях, каркасах, обвязочных балках и т. п.), имеющих со стенами конструктивную связь (заделка, анкеры и т. п.), а также должны совпадать с другими видами швов (осадочными, сейсмическими, монтажными и т. п.);

в) температурные швы должны обладать достаточной горизонтальной подвижностью (до 10-20 мм) как при сжатии, так и при расширении шва, а конструкция шва должна обеспечивать удобную установку, контроль и ремонт герметизирующих устройств и утеплителя;

Черт. 60. Примеры устройства температурных швов в стенах каменных зданий с армированными включениями (перекрытия, балки, армированные пояса)

а - при расположении армированных включений в средней части здания; б - то же, в крайней части; в - при железобетонном покрытии (крыше) со швом; г - при фундаментных балках со швом; д - примеры заделки армированных включений в кладку стен; 1 - перекрытие; 2 - железобетонная балка; 3 - металлическая балка; 4 - арматура; 5 - температурный шов в армированных элементах (плитах, балках); 6 - то же, в каменных стенах (пунктир); 7 - сборные перекрытия с поперечными швами

г) ширина температурного шва определяется расчетом, но должна быть не менее 20 мм;

д) температурные швы наружных стен должны быть водо- и воздухонепроницаемыми и непромерзаемыми, для чего они должны иметь утеплитель и надежную герметизацию в виде упругих и долговечных уплотнителей из легкосжимаемых и несминаемых материалов (для зданий с сухим и нормальным режимами эксплуатации), металлических или пластмассовых компенсаторов из коррозиеустойчивых материалов (для зданий с влажным и мокрым режимами).

7.226. Герметизация температурных швов в наружных стенах осуществляется с помощью металлических и пластмассовых компенсаторов (черт. 61, д, б) или с помощью упругих уплотнителей (черт. 61, в, г).

Герметизация швов внутренних стен производится с помощью уплотнителей. Использование для этих целей компенсаторов должно быть обосновано.

Черт. 61. Устройство температурных швов в наружных стенах зданий

а, б - с сухим и нормальным режимами эксплуатации; в, г - с влажным и мокрым режимами; 1 - утеплитель (толь и рубероид с утеплителем или пороизол, гернит); 2 - штукатурка; 3 - расшивка; 4 - компенсатор; 5 - антисептированные деревянные рейки 60´60 мм; 6 - утеплитель; 7 - вертикальные швы, заполненные цементным раствором

В зависимости от влажностного режима внутренних помещений компенсаторы могут изготовляться из коррозиеустойчивого листового металла (оцинкованная или нержавеющая сталь, медь, свинец и т. п.) или специальных пластмасс (поливинилхлорид, неопрен, бутил и т. п.). Концы компенсаторов должны плотно заделываться в бетон или кладку стен, как показано на черт. 61.

Использование для герметизации швов в наружных стенах уплотнителей из упругих поризованных материалов (пороизол, гернит и т. п.), а также пакетов из рубероида или толя с прокладкой упругого утеплителя между слоями этих материалов (см. черт. 61, а, б) допускается только для зданий с сухим и нормальным влажностными режимами при ширине температурных швов не более 30 мм. В этом случае температурный шов в стене выполняется. с уступами кладки (шпунт, четверть, см. черт. 61, а, б).

При использовании компенсаторов кладка швов выполняется без уступов. Герметизация швов с помощью уплотнителей производится с двух сторон (снаружи и изнутри).

Примеры устройства температурных швов в железобетонных утепленных и неутепленных крышах зданий показаны на черт. 62.

7.227. При опирании перекрытий на несущие поперечные стены, ригели рам каркасов и т. п. температурные швы устраиваются в виде двух спаренных стен (черт. 63, д, б), ригелей и колонн каркасов или в виде швов скольжения плит перекрытий, опирающихся на консольные выпуски, заделанные в поперечные стены или в специальные штрабы (черт. 63, в, г). Для обеспечения скольжения под опоры плит следует укладывать два слоя кровельного железа, как показано на черт. 63.

Черт. 62. Примеры устройства температурных швов в железобетонных крышах

а - с гребнем из бетона; б - с гребнем из кирпичной кладки; в - без гребня; 1 - деревянные антисептированные пробки; 2 - компенсатор из кровельного железа; 3 - доска 50´120 мм; 4 - бетон класса В12,5; 5 - рулонная кровля; 6 - кирпичная кладка на растворе марки 100; 7 - скоба (-3´40) через 500 мм; 8 - железобетонные плиты

Черт. 63. Температурные швы в зданиях с поперечными несущими стенами

а, б - в виде двух спаренных стен; в - в виде скользящего опирания плит перекрытий в штрабе поперечной стены; г -то же, на консольную плиту, заделанную в стену; 1 - утеплитель (толь или рубероид с утеплителем или пороизол, гернит); 2 - два слоя оцинкованного железа; 3 - податливая связь - ограничитель диаметром 6-8 мм через 1,5-2 м; 4 - нащельник; 5 - железобетонная консоль

7.228. Температурные швы в зданиях с продольными несущими стенами устраиваются у внутренних поперечных стен или перегородок (черт. 64).

Черт. 64. Температурные швы в зданиях с продольными несущими стенами

а - в местах сопряжения продольной стены с поперечной; б - то же, у поперечной перегородки; 1 - утеплитель (толь или рубероид с утеплителем или пороизол, гернит); 2 - расшивка шва; 3 - нащельник; 4 - просмоленная пакля; 5 - перегородка

7.229. Штукатурка в местах устройства температурных швов должна расшиваться (черт. 64, а, б).

В жилых, общественных и бытовых помещениях температурные швы рекомендуется закрывать со стороны помещений нащельниками (см. черт. 64).




<== предыдущая лекция | следующая лекция ==>
Закон изменения объема сплошной среды сплошной среды при упругих и упруго-пластич деформ | Ураган Лоу

Дата добавления: 2015-08-31; просмотров: 907. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия