Студопедия — Крутящие моменты, передаваемые валами, определяется по формуле
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Крутящие моменты, передаваемые валами, определяется по формуле






 

1. Анурьев В.И. Справочник конструктора – машиностроителя. В 3-х т. Т. 2. – 5-е изде., перераб. и доп. – М.: Машиностроение, 1978. – 559 с., ил.

2. Свирщевский Ю.И., Макейчик Н.Н. Расчет и конструирование коробок скоростей и подач. Мн.: Высш. Шк., 1976. 590с,: ил.

 

Крутящие моменты, передаваемые валами, определяется по формуле

Ti =9550 .

T1= H×м

T2 = Н∙м

2. Расчет зубчатой передачи

2.1 Выбор материалов и способов термообработки шестерни и колеса. Расчет допускаемых напряжений.

Выбираем для шестерни и колеса сталь 45 с термообработкой улучшения для шестерни, с нормализацией – для колеса

НВ1=210 НВ2=190 [1, c.34, т. 3.3]

2.1.1 Расчет допускаемых контактных напряжения

н]=

где i=1 для шестерни, i=2 для колеса;

s Hi limB - предел контактной выносливости при симметричном цикле нагружения; Мпа

s Hi limB =

s H1 limB = МПа

s H2 limB= МПа

[SHj] - коэффициент безопасности, определяется способом термообработки; [1, с.33]

[SH] = 1.1..1.2 SH = 1.15

KHLj - коэффициент долговечности;

KHLj = 1,

где NH 0 j – базовое число циклов, определяемое твердостью боков поверхности зубьев;

NH0j=

NH0 1=

NH0 2 =

N HE j – эквивалентное число циклов, определяемое сроком службы передачи, числом оборотов вала шестерни и валов колеса, коэффициентом использования;

N HE j = T ∙k∙ni∙60,

где T – срок службы зубчатой передачи; T=20000 часов

k - коэффициент использования передачи; k=0,8;

ni – частота вращения валов редуктора, n 1= 277,07 об/мин, n 2= 78,05 об/мин;

N HE1 = 20000∙0,8∙277,07∙60=2,6 ∙108

N HE2 = 20000∙0,8∙78,05∙60=0,7 ∙108

Поскольку

Допускаемые контактные напряжения для шестерни и колеса

[s H 1]= МПа

[s H2 ]= МПа

Для косозубой передачи принимается наименьшее из значений, полученных по зависимости

1. [σн]=0,45∙([σн1]+[σн2])= 0,45 (426+391)= 367 Мпа

2. [σн]=1,23∙ [σнi]min= 1,23∙391=481 Мпа

н]=367 Мпа

2.1.2. Расчет допускаемых напряжений изгиба

,

где - предел изгибной выносливости при отнулевом цикле нагружения; МПа

[1, c. 44, т.3.9]

МПа

МПа

[SF] - коэффициент безопасности

[SF]= [SF]΄∙ [SF]΄΄,

где [SF]΄ - коэффициент, учитывающий механические свойства и твердость зубьев;

[SF]΄΄- коэффициент, учитывающий способ получения заготовки для шестерни или для колеса

[SF]΄=1,75 [1, с.44, т.3.9]

[SF]΄΄=1 [1, с.44]

[SF]=1,75

Допускаемые напряжения изгиба:

МПа

МПа

МПа

2.2 Расчет параметров зубчатой передачи

2.2.1 Расчет межосевого расстояния

= (u +1) ,

где - коэффициент, учитывающий тип передачи; = 43

- коэффициент, учитывающий распределение нагрузки по длине зуба, [1, c.32, т. 3.1]

- коэффициент ширины; = 0,25…0,5=0,4

u – стандартное передаточное отношение, u=u2=3,55;

T2 – крутящий момент на валу колеса, Т2 = 512,7 Н×м

αw =43∙(3,55+1) =178 мм

 

Округлим до ближайшего большего стандартного значения [1, с. 36] мм.

αw=180 мм

2.2.2 Расчет ширины колеса (расчетной ширины зубчатой передачи)

bw2=bwba∙ αw=0,4∙180=72 мм

bw= 71 мм [1, с. 36]

2.2.3 Расчет модуля зацепления

m =(0,01…0,02) αw=1,8…3,6 мм

Округлим m до стандартного значения [1, с. 36]: m = 3 мм

 

2.2.4 Расчет суммарного числа зубьев шестерни и колеса, угла наклона зуба в косозубой передаче

Z= ,

где β – угол наклона зуба

β= 8…15°=10°

Z= =118,08

 

Z =118

β = arcos =arcos =arcos(0,9833)=10,4858=10°29`8``

Z1= 25,9

 

Z1=26

Z2= Z -Z1=118-26=92

2.2.5 Расчет фактического передаточного отношения


иф = 3,538

[∆ и ]=±3,3%

 

и = ∙100=0,33% < 3,3%

2.3 Проверочный расчет зубчатой передачи

2.3.1 Расчет по контактным напряжениям

Контактные напряжения равны

,

где с – коэффициент, учитывающий тип передачи; с= 270

aw- межосевое расстояние; мм

bw- расчетная ширина зубчатой передачи; мм

T2- крутящий момент на валу колеса; н∙мм

uф- фактическое передаточное отношение;

KН - коэффициент нагрузки,

KН = K K KНV.

v=ω1∙r1,

где ω1- угловая скорость шестерни, рад/м

ω1=

r1- радиус делительной окружности шестерни; мм

r1=

 

v= =1130,9 мм/с=1,13 м/с

степень точности - 8

KH α – коэффициент, учитывающий распределение нагрузки между зубьями, KH α=1,09 [1, с. 39, т. 3.4]

KH β - коэффициент, учитывающий распределение нагрузки по длине зуба,

KH β =1,0 [1, с. 39, т. 3.5]

KНV - динамический коэффициент, определяемый степенью точности изготовления передачи,

KНV=1,0 [1, с. 40, т. 3.6]

KH=1,09×1,0×1,0=1,09

σн= 363,61 Мпа

∆σн= ∙100=0,92% <|±5%|

 

 

 

2.3.2 Расчет по напряжению изгиба

 

KF - коэффициент нагрузки;

YF - коэффициент формы зуба;

Y b - коэффициент, учитывающий влияние осевой силы в косозубой передаче на напряжение изгиба в основании зуба;

- коэффициент, учитывающий распределения нагрузки между зубьями;

m – модуль зацепления; мм

bw –ширина колеса; мм

- окружное усилие, Н

Ft =Ft1=Ft2 =

где T2- крутящий момент на валу колеса;

- диаметр начальной окружности колеса, мм

где - диаметр начальной окружности шестерни, мм

dw1= =79,33 мм

 

dw2=79,33∙3,538=280,67 мм

Ft = 3653,4 н

KF = K×KFV,

где KF β - коэффициент, учитывающий распределение нагрузки по длине зуба;

KFV - динамический коэффициент,

KFV= 1,1[1, c. 43, т.3.8]

Ψbd= - коэффициент диаметра

Ψbd= 0,89

KF β = 1,1 [1, c. 43, т.3.7]

KF = 1,1 ×1,1=1,21

YF= 3,8[1, c. 42]

Yb=1- 0,926

K [1, c. 46]

Еβ = 1,39 > 1

=0,92

σw= 67,2 МПа>[GF]=195 Мпа

Условия изгибной прочности передачи выполняются

3. Первый этап эскизной компоновки редуктора

3.1 Компоновка зубчатой передачи в корпусе редуктора

 

 

 

 

dw1=79,33 мм

dw2=280,67 мм

bw1= bw2+3…5=75 мм

bw2=71 мм

мм

3.2 Компоновка валов







Дата добавления: 2015-08-17; просмотров: 626. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия