Студопедия — Устанавливаются диаметры труб для отдельных участков сети исходя из расчетных расходов воды.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Устанавливаются диаметры труб для отдельных участков сети исходя из расчетных расходов воды.






Количество воды Q, м3/с, протекающее по трубопроводу, определяется из уравнения гидравлики:

(1.1)

где v - скорость течения жидкости, м/с;

S - площадь поперечного сечения потока, м2.

При заполненном трубопроводе площадь поперечного сечения потока равна площади живого сечения трубы, т. е.:

(1.2)

где d - внутренний диаметр трубы, м.

Тогда:

(1.3)

При расчете водопроводной сети важно установить скорость перемещения жидкости в трубопроводе. Изменение скорости (при заданном расчетном расходе) значительно влияет на экономические показатели системы водоснабжения. С одной стороны, чем меньше скорость, тем больше диаметр труб и, следовательно, выше строительная стоимость (капитальные затраты) водопроводной сети, но меньше эксплуатационные расходы. С другой стороны, чем больше скорость воды в трубах, тем больше потери напора на гидравлическое сопротивление и, следовательно, излишние затраты энергии на подъем воды, т.е. эксплуатационные расходы. Существует показатель экономически наиболее целесообразного диаметра трубы, зависящий от соотношения капитальных и эксплуатационных затрат. Это экономический фактор.

По количеству воды, протекающей по данному участку, по прил. 1[1] устанавливаются диаметры труб для каждого участка при экономическом факторе

Э = 0,75, согласно принятому сортаменту и материалу труб.

 

Стальные трубы:d5-7=300 мм; d5-6=300мм; d3-5=400мм; d3-4=250мм; d1-3=450мм;

d1-2=175мм; dБ-1=450мм

 

3.Рассчитываются истинные скорости движения воды в трубе принятого диаметра Vфакт(м/с) по формуле:

(1.4)

где q - расход воды на участке, м3/с;

d - диаметр трубопровода, м.

Проверяется, укладывается ли полученное значение в экономически выгодные скорости движение воды в трубопроводах.

Диаметр трубы, мм до 300 300-900 более 1000

Скорость воды, м/с 0,6-0,9 1,0-1,4 1,5-1,7

Фактическая скорость не должна превышать рекомендуемые. В противном случае принимается другой стандартный диаметр трубы и пересчитывается фактическая скорость.

 

4.Определяются потери напора h (м) на трение в водопроводных трубах.

Они складываются из потерь напора на прямых участках трубопровода (они связаны с трением слоев воды друг о друга и о стенки трубопровода) и из местных потерь в арматуре, фасонных частях, изгибах и сужениях водного потока и т.п.

Потери напора на прямых участках трубопроводов hтр(м):

(1.5)

где i- удельные потери напора в трубопроводе длиной 1 м (гидравлический уклон), м/м;

L - длина трубопровода (участка), м.

Гидравлический уклон рекомендуется определять по "Таблицам для гидравлического расчета стальных, чугунных, асбестоцементных, пластмассовых и стеклянных водопроводных труб" [5] или по формуле

(1.6)

где А - удельное сопротивление трубопровода, зависящее от диаметра и шероховатости внутренней поверхности труб, м (табл.1)[1].

А5-7=0,9392,

А5-6=0,9392,

А3-5=0,1089,

А3-4=0,9392,

А1-3=0,06222,

А1-2=9,273,

АБ-1=0,06222,

Потери напора в местных сопротивлениях принимаются равными 5 - 10% потерь на прямых участках, тогда суммарные потери напора на участках с учетом местных сопротивлений h (м) равны:

(1.7)

5.Определяются суммарные потери напора от каждого потребителя (точки 2, 4, 6, 7) до водонапорной башни. Например, потери напора на участке Б-7 равны:

НБ-7 = h5-7 + h3-5+ h1-3+ hБ-1,м (1.8)

НБ-7 = h5-7 + h3-5+ h1-3+ hБ-1=1,485+1,21+0,924+3,15=6,77м

НБ-6 = h5-6 + h3-5+ h1-3+ hБ-1=2,1175+1,21+0,924+3,15=7,4м

НБ-4 = h3-4+ h1-3+ hБ-1=0,33+0,924+3,15=4,404м

НБ-2 = h1-2+ hБ-1=1,1+3,15=4,25м

6.Рассчитывается необходимая высота водонапорной башни для каждой точки (2, 4, 6, 7).

Например, для точки 7 высота водонапорной башни Н (м)равна:

Н = Z7 – ZБ + НБ-7+ Нсв.7, (1.9)

где Z7 – ZБ - разность геодезических отметок между точкой 7 и водонапорной башней (Б), м;

НБ-7 - суммарные потери напора от точки водонапорной башни Б-7 до точки 7 с учетом потерь в местных сопротивлениях, м;

Нсв.7 - свободный напор воды в точке 7, м.

Н = Z7 – ZБ + НБ-7+ Нсв.7=39-30+6,77+14=29,77 м;

Аналогичные расчеты производятся для других водопотребителей.

Для точки 6 высота водонапорной башни Н (м)равна:

Н = Z6 – ZБ + НБ-6+ Нсв.6=35-30+7,4+12=24,4м;

для точки 4 высота водонапорной башни Н (м)равна:

Н = Z4 – ZБ + НБ-4+ Нсв.4=27-30+4,4+10=11,4м;

для точки 2 высота водонапорной башни Н (м)равна:

Н = Z2 – ZБ + НБ-2+ Нсв.2=22-30+4,25+10=6,25м

Результаты расчетов для каждого участка заносятся в табл. 2.

Высота водонапорной башни принимается по максимальному значению.

 

 

Таблица 1.

Расчет высоты водонапорной башни

Обозначение участка Расход на участке q, л/с Длина участка l, м Диаметр трубы D, мм Скорость воды Vрасч, м/с Гидравлический уклон i, м/м Потери напора на участке hтр, м Потери напора на участке с учетом местных сопротивлений h, м Суммарные потери напора от потребителя до башни НБ-К, м Разность геодезических отметок, ZБ-ZК,м Свободный напор Нсв, м.вод.ст. Выота водонапорной башни НБ, м
5-7       1,19 0,0054 1,35 1,485 6,77     29,77
5-6 86,25     1,2 0,007 1,925 2,1175 7,4    
3-5 201,3     1,3 0,0044 1,1 1,21      
3-4 57,5     1,2 0,0032 0,3 0,33 4,404 -3  
1-3 258,75     1,3 0,0042 0,84 0,924      
1-2 28,75     0,9 0,0077   1,1 4,25 -8  
Б-1 287,5     1,4 0,0052 2,86 3,15      

 

7.Аналогично производится расчет водовода Н - Б. По количеству воды, протекающему по водоводу (оно равно qБ-1), определяется диаметр трубы, рассчитывается фактическая скорость движения воды и потери напора на участке

Н - Б с учетом местных сопротивлений Нч

Нч = 1,1hч, (1.10)

где hч - потери напора на участке Н - Б, м.

qН-Б=qБ-1=287,5л/с; d=500мм; Vфакт=1,4 м/с; hч=5,98 м;

Нч = 1,1hч=1,1*5,98=6,6м

8. Определяется напор насоса по формуле

Нм = Нч + НБ + ZБ - ZH + hизл. + hБ +hBC, (1.11)

где Нм - манометрический напор насоса, м. вод. ст.;

Нч - потери напора в нагнетательном трубопроводе (на участке Н-Б);

НБ - высота водонапорной башни, м;

ZБ - ZH - разность геодезических отметок между водонапорной башней и насосной, м;

hизл - напор свободного излива на конце трубопровода, принимается равным 0,5 - 1,5 м;

hБ - высота воды в баке водонапорной башни, принимается равной 3 - 5 м;

hвс - потери напора во всасывающем трубопроводе, м.

Определяются по формуле

, (1.12)

где - гидравлический коэффициент сопротивления трубопровода, принимается по табл. 3[1]; =0.0288

- эквивалентная длина арматуры, м, принимается по табл.4[1]. Арматура включает приемную сетку с клапаном, нормальное колено, переходной патрубок;

lпр.с=57,5м;

lн.к=3,75 м;

lп.п=9,5м

1вс - длина всасывающего трубопровода, принимается равной 10м;

dec - диаметр всасывающего трубопровода:

dвc= dвод+0,25=0,35+0,25=0,6м

deод – диаметр водопровода Н-Б,м;

Q – количество воды, проходящее через насос, м3/с.

Нм = Нч+ НБ + ZБ - ZH + hизл. + hБ +hBC=6,6+29,77+30-25+1+4+0,04=46,41м.вод.ст

По требуемым расходу (Q, л/с) и напору (Нм, м) по каталогу насосов подбирается подходящий центробежный насос и приводится его техническая характеристика.

Технические характеристики насосов типа К и Д приведены в прил. 7 и 8[1].

Таблица 3. Техническая характеристика насоса Д1250 – 65

Подача Q,м3/ч Напор Н, м.вод.ст. Частота вращения вала n, мин-1 КПД η,% Мощность электродвигателя N, кВт
         

 







Дата добавления: 2015-08-17; просмотров: 323. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия