Студопедия — Дифференциальные уравнения первого порядка. Дифференциальными уравнениями первого порядка называются уравнения вида .
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дифференциальные уравнения первого порядка. Дифференциальными уравнениями первого порядка называются уравнения вида .






 

Дифференциальными уравнениями первого порядка называются уравнения вида .

Определение. Решением дифференциального уравнения называется всякая функция , которая, будучи подставлена в уравнение, превращает его в тождество.

Определение. Общим решением дифференциального уравнения первого порядка называется функция , которая является решением при каждом фиксированном С из некоторого множества М, и для любого решения существует такое значение С1 из М, что = при любом х, т.е. любое решение получается из выбором соответствующего С.

Перечислим основные типы уравнений и укажем способы их решения:

1) дифференциальное уравнение первого порядка с разделяющимися переменными - это уравнение вида:

.

Решается это уравнение делением его обеих частей на и затем интегрированием;

2) однородное дифференциальное уравнение. Функция , называемая однородной степени , если для любого выполняется условие: .

Дифференциальное уравнение

называется однородным, если функция - однородная нулевой степени. Такое уравнение заменой , где - новая неизвестная функция, сводится к уравнению с разделяющимися переменными.

3) линейное уравнение. Дифференциальное уравнение вида

(2)

называется линейным дифференциальным уравнением первого порядка. Оно сводится к двум уравнениям с разделяющимися переменными подстановкой: где и - новые неизвестные функции.

 

Пример. Найти общее решение дифференциального уравнения .

Решение. Преобразуем наше уравнение следующим образом:

; .

Это уравнение с разделяющимися переменными. Разделив обе части последнего равенства на получим:

;

Интегрируя обе части уравнения, получим:

 

; ;

 

;

Последнее равенство задает нам решение в виде неявной функции . Обратим внимание на то что, что не все решения задаются указанным равенством. При делении на могли быть потеряны решения и Очевидно (подставьте в уравнение), что является решением, а – нет. Итак, общее решение задается двумя формулами: и .

Пример. Найти общее решение дифференциального уравнения .

Решение. Преобразуем уравнение к следующему виду:

 

; .

Если правую часть последнего уравнения обозначить через , то

= = =

Следовательно, рассматриваемое уравнение является однородным.

Положим теперь , или ,тогда . Подставляя в уравнение выражения для у и , получим: ; ;

Разделяем переменные в последнем уравнении, деля его на , и интегрируем полученное равенство:

;

Отсюда , или .

Здесь мы вместо константы для удобства добавили константу . Заменяя на , получим решение:

Последнее равенство может давать не все решения, часть из них могли потеряться при разделении переменных (мы делили уравнение на ). Положим теперь и . Но не является решением уравнения, а из равенства получаем, что , или . Непосредственной подстановкой в уравнение убеждаемся, что функции являются решениями. В нашем случае все решения задаются тремя формулами:

; и .

Пример. Найти общее решение линейного дифференциального уравнения

Решение. Это линейное уравнение, поэтому его общее решение будем искать в виде . Тогда

Подставляя у и в уравнение, получим:

Функцию найдем из того условия, что выражение в скобке в последнем равенстве должно обращаться в ноль:

.

Последнее уравнение неявно задает две серии функций:

Так как нам достаточно взять какое-то частное решение, то положим

В этом случае наше уравнение перепишется так:

Учитывая, что получим общее решение уравнения

 

 







Дата добавления: 2015-09-19; просмотров: 386. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия