Студопедия — ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫИГРЫШНЫХ И ПРОИГРЫШНЫХ СДЕЛОК
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫИГРЫШНЫХ И ПРОИГРЫШНЫХ СДЕЛОК






 

Долгое время считалось, что каким-то образом несколько убыточ­ных или выигрышных сделок подряд открывают перед трейдером ши­рокие возможности получить прибыль. Популярная легенда утвержда­ет, что последовательность убыточных сделок реально увеличивает ве­роятность совершения прибыльных сделок. И наоборот: если метод или система дали несколько прибыльных торгов подряд, то возрастает вероятность убыточной сделки. В результате трейдеры перестают за­ключать сделки до тех пор, пока метод или система не дадут, по край­ней мере, несколько убыточных сделок подряд.

Эти легенды порождены разнообразной житейской практикой, од­нако математически доказать эффективность подобных теорий невоз­можно, особенно в торговле. В некоторых областях жизни несколько одинаковых исходов подряд действительно могут означать кардиналь­ную перемену ситуации в будущем. Однако для того, чтобы можно бы­ло применить математический расчет, необходимы определенные ус­ловия. В этой главе проясняется, где и почему такие условия могут быть справедливыми. И, наконец, эта глава описывает возможные со­отношения между различными финансовыми инструментами и этой теорией. Хотя никакой математической подоплеки здесь нет, тем не ме­нее существуют некоторые интересные мысли по использованию по­добных явлений в реально возникающих торговых ситуациях.

Я подозреваю, что большинство теорий, основанных на эффекте нескольких следующих друг за другом выигрышных и/или проигрыш­ных сделок, проникло в мир торговли из азартных игр. Азартная игра основана на теории полос. Любой профессиональный игрок скажет вам, что невозможно обратить неблагоприятную ситуацию в свою пользу. Таким образом, схемы управления капиталом, которые исполь­зуют азартные игроки, берут свое начало в сфере управления полоса­ми удач и неудач. Вспомним пример с подбрасыванием монеты и пари с отрицательным ожиданием. В некоторых ситуациях манипулирова­ние размерами ставки пари в соответствии с полосами удач и неудач позволяло увеличить прибыли. Однако в других примерах, где также использовались полосы, результат получался хуже. Я не утверждаю, что являюсь экспертом в азартных играх и хорошо знаю статистику. Я не играю для того, чтобы заработать на игре деньги, но и не считаю иг­ру чем-то вроде развлечения. Я не тот человек, который испытывает "смутное чувство", совершая какие-либо действия, которые могут с те­чением времени отнять у меня деньги. Я не нахожу ничего волнующе­го в том, чтобы участвовать в играх, где можно смошенничать. Предпо­ложим, что вам нравится бокс, но вы не являетесь ни профессионалом, ни даже любителем, Вы просто испытываете удовольствие, когда выхо­дите на ринг сразиться с другим неопытным боксером, который после первого вашего удара сразу отправится в нокаут. Понравилась бы вам эта затея, если бы вы должны были выйти на ринг с... Майком Тайсоном? Если победитель игры получает 25 миллионов долларов, то кто, по-вашему, должен выиграть? Какова была бы у вас вероятность одер­жать победу? Это то; что я называю мошеннической борьбой. Мошен­ническая означает несправедливая. Интересно, каковы были бы шан­сы выиграть пари? Совершенно честно, даже не зная, кто вы, я без со­мнения поставлю деньги на Майка Тайсона и назову подобную инвес­тицию совершенно безопасной.

Точно так же индустрия казино вкладывает огромные суммы денег в то, что они считают совершенно безопасной инвестицией. Я не иску­шен в азартных играх, не знаю правил, не имею необходимой статис­тики, но я хорошо знаю несколько вещей. И они представляют собой те причины, по которым я никогда не брошу ни единой монеты в играль­ные автоматы и не буду играть в рулетку. Нет никакой математической гарантии, что можно доверять произвольной смене "удачных" и "не­удачных" полос.







Дата добавления: 2015-08-12; просмотров: 328. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия