Студопедия — Понятие о динамической устойчивости системы
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Понятие о динамической устойчивости системы






Предметом изучения динамической устойчивости является изучение поведения системы по­сле больших возмущений, в частности после КЗ.

Для выяснения принципиальных положений динамической устойчивости рассмот­рим переходный процесс, вызванный КЗ на одной из ли­ний электропередачи, соединяющих электростанцию с системой бесконечной мощности, с последующим отключением поврежденной линии (рис.2.5).

Для более общего случая будем считать, что КЗ несимметричное.

Чтобы проследить изменение электромагнитной мощности генератора во время пе­реходного процесса, необходимо построить моментно-угловые характеристики мощности для трёх режимов:

- нормального (исходного);

- аварийного (во время КЗ);

- послеаварийного (при отключённой линии).

 

а) б)

в) г)

Рис. 2.5. Принципиальная схема электропередачи (а) и схемы замещения для нормального (б), аварийного (в) и послеаварийного (г) режимов

 

С этой целью составим схемы замещения электропередачи для перечисленных ре­жимов (рис. 2.5), замещая генератор переходной ЭДС Е' за переходным сопротивлением Х ¢d, и определим амплитуды характеристик для каждого режима.

Амплитуда характеристики мощности для исходного режима

,

где .

Амплитуда характеристики мощности для режима КЗ

,

где ;

D Х – шунт несимметричного КЗ, величина которого зависит от вида КЗ (см. табл. 1.2).

Сопротивление Х II определено как сопротивление стороны треугольника, связывающее генератор и систему, после преобразования звезды (рис. 2.5, в) в треугольник.

Амплитуда характеристики мощности для послеаварийного режима

,

где .

На рис. 2.6 показаны характеристики I, II, III указанных выше режимов. Рассмотрим, как меняется электромагнитная мощность генератора при переходах от одного режима к другому.

В момент, соответствующий началу КЗ, происходит переход из точки а характеристики нормального режима в точку b характеристики аварийного режима, так как вследствие инерции ротора угол δмгновенно измениться не может. В результате на валу системы турбина-генератор возникает избыточный ускоряющий момент, обусловленный разностью моментов (мощностей) турбины РТ и генератора Р. Мощность турбины принимается неизменной за всё время переходного процесса РТ = const, так как регулятор скорости не успевает за это время изменить мощность, развиваемую турбиной.

 

Рис. 2.6. Моментно-угловые характеристики в нормальном (I),

аварийном (II) и послеаварийном (III) режимах

 

Под влиянием ускоряющего момента ротор генератора начнет перемещаться относительно вектора напряжения приёмной системы, угол δ будет увеличиваться. Этому процессу соответствует движение из точки b в точку c. После отключения КЗ электромагнитная мощность становится больше мощности турбины и на валу агрегата появляется избыточный тормозящий момент (точка e). Несмотря на это, ротор ещё некоторое время будет перемещаться в сторону увеличения угла δ, пока не израсходуется запасенная им за время КЗ кинетическая энергия (точка f). Если эта энергия будет израсходована до достижения ротором генератора точки h, ротор начнет перемещаться в обратном направлении и после нескольких колебаний перейдёт в новый установившийся режим с углом δ¢0.Если же ротор пройдёт точку h, то избыточный момент вновь станет ускоряющим и генератор выйдет из синхронизма. В первом случае считают, что система динамически устойчива, во втором – неустойчива.

Приведенный на рис. 2.6 метод оценки динамической устойчивости электроэнергетической системы получил название метода площадей. На рис. 2.6 площадь abcd эквивалентна энергии ускоряющей ротор (площадь ускорения ротора), а площ адь defg эквивалентна энергии, тормозящей ротор (площадь торможения ротора). Для рассматриваемого случая максимально возможная энергия торможения эквивалентна площади defh.

Таким образом, если возможная площадь торможения будет больше площади ускорения, то система будет динамически устойчива.

 







Дата добавления: 2015-08-12; просмотров: 1504. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия