Студопедия — Теорема Ляпунова.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теорема Ляпунова.






Теперь вычислим период, для этого составим дифференциальные уравнения, которым удовлетворяют переменные ρ и θ. Вычислим

(1.15)

Заменяя в системе (1.15) производные и их выражениями из уравнений (1.8) и разрешая полученную систему относительно производных и , найдем искомые уравнения

(1.16)

Из второго уравнения определим t:

(1.17)

Для того чтобы удовлетворить условиям (1.13), необходимо константу (1.17) принять равной нулю. Используем тот факт, что ρ - аналитическая функция μ. Это позволит разложить подынтегральную функцию в выражении (1.17) в ряд по степеням μ

(1.17’)

где - периодические функции θ периода 2π. Следовательно, подынтегральная функция в (1.17’) также периодическаяфункцияθ периода 2π. Следовательно, интеграл

не зависит от θ0 и его можно записать в виде

,

где - вполне определенные числа. Таким образом, при измени θ; на 2π время t получает приращение Т

, (1.18)

не зависящие от θ0.

Пусть теперь Ф(θ) – некоторая периодическая функция θ периода 2π, тогда

. (1.19)

Рассматривая ее как функцию t, будем иметь

. (1.20)

Равенство (1.19) справедливо для любых θ, следовательно, и равенство (1.20) справедливо для любых t, т. е. Ф(t) – периодическая функция t. Значит, величина Т, определенная формулой (1.18) как функция μ, и есть период решения.

Используя (1.17), мы можем записать его в следующем виде:

где период Т стремится к периоду линейных колебаний 2π/λ, т. е. к периоду колебаний в системе (1.8) при .

Покажем теперь, что Т- четная функция μ. Вернемся сова к интегралу (1.11). рассматривая его как уравнение относительно ρ, мы получаем в окрестности точки ρ=0 два решения. Одно из них

(1.21)

другое

(1.21’)

Теперь заметим, что левая часть уравнения (1.11) не изменится, если заменим ρ на -ρ и θ на θ + 2π. Следовательно, на основании (1.21) будем иметь

(1.22)

Значение ρ, определенное рядом (1.22), будет корнем уравнения (1.11), не совпадающее с (1.21) (потому, что для малых ρ из (1.21) следует ρ = μ+О(μ2), а из (1.22) ρ = - μ+О(μ2)). Следовательно, оно будет определяться рядом (1.21’).

Сравнивая (1.21’) и (1.22), получаем

и т.д.

Отсюда следует, что если в выражении (1.21) заменить μ на – μ, а θ на θ + π, то величина ρ примет свое значение с обратным знаком:

.

Выпишем теперь выражение для периода Т. На основании (1.17) имеем

. (1.23)

Сделаем замену в (1.23) замену μ на –μ, а θ на θ + π. Тогда получим величину

.

Согласно доказанному величины и сохраняют свои значения. Следовательно, то же самое можно сказать и о функциях Х и Y. В то же время , и изменяют свои знаки. Следовательно, знаменатель изменит знак на обратный, но и числитель изменит знак на обратный. Следовательно,

.

Итак,

,

т. е. период – четная функция величины μ.

Таким образом, выше было доказано теорему Ляпунова, а теперь сформулируем ее.

Теорема Ляпунова.

Если постоянная достаточно мала, то все решения системы уравнения (1.8) ─ периодические функции t, причем период ─ четная функция величин и при стремится к. Решения системы (1.8) являются аналитическими функциями величины c ─ начального отклонения переменной x.

Имея в виду формулу

выражение периода можно переписать в следующем виде:

(1.24)

 

Раздел 2.

Условия существования периодических решений







Дата добавления: 2015-08-10; просмотров: 339. Нарушение авторских прав; Мы поможем в написании вашей работы!



Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия