Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Моделирование переходного процесса в замкнутом контуре регулирования





Существуют различные способы моделирования на ЭВМ переходных процессов в динамических системах. Выбор алгоритмов моделирования в основном определяется формой математического описания системы и имеющимся программным обеспечением. Если система задана обыкновенными дифференциальными уравнениями, то чаще всего применяют чис­ленные методы интегрирования. Наиболее распространенной в програм­мном обеспечении ЭВМ является реализация метода Рунге – Кутта.

Если динамическая система задана структурной схемой, то переходные процессы в ней удобно строить при помощи метода струк­турного моделирования. Суть метода состоит в том, что ЭВМ по рекуррентным формулам последовательно вычисляет значения выходов отдельных звеньев системы в дискретные равностоящие мо­менты времени.

Для всех линейных звеньев первого порядка формула построения переходного процесса имеет следующий вид:

(1.1)

где a1, a2, a3 – числовые коэффициенты, зависящие от типа и параметров звена, а также от выбранной величины интервала ∆t. Где ∆t – это максимально допустимый период дискретности, при котором достигается высокая точность моделирования переходного процесса. Для высокой точности моделирования переходных процессов в звене ∆t должно быть достаточно малым. Значения коэффициентов a1, a2, a3 и максимально допустимые величины интервалов ∆t для звеньев первого порядка берем из таблицы.

Таблица 1

Передаточная функция звена
 
 
 

 

Для объекта формула выглядит в виде колебательного звена, поэтому звено заменим эквивалентной схемой:

Рис.1.1

 

 


Рис.1.2

Расчетная схема примет вид:

Рис.1.3

Графики u(t) и y(t) представлены на рисунке 1.4


 

Описание блоков схемы:

Signal Builder:

 

Sin wave1: Saturation1:

 

Uniform Random number1: Gain1:

 

Расчетные коэффициенты звеньев:

1) ;

a11=1;

a12=(0,5*dt)/2;

a13=a12;

;

2) ;

a21= exp(-dt/0.1);

a22=2/dt*(0.1*a21-0.1+dt);

a23=-2/dt*(0.1*a21-0.1+a21*dt);

;

3) ;

a31= exp(-dt/1.5);

a32=1/dt*(1.5*a31-1.5+dt);

a33=-1/dt*(1.5*a31-1.5+a31*dt);

;

4) ;

a41=1;

a42=(0,15*dt)/2;

a43=a42;

;

Выбираем наименьший период дискретности, равный 0.005,

В цикле используем значений.

Алгоритм моделирования

Рис 1.4

1. Объявляем массивы, в которых будут храниться значения входов и выходов структурных звеньев.

2. Вводим значения всех сигналов в момент времени t=0. Поэтому

x(1)=2; v1(1)=0; v2(1)=0; v3(1)=0; v4=zeros(1,6000); vm=zeros(1,6000); y=zeros(1,6000); e(1)=x(1)-y(1); z1(1)=K1*e(1); r1(1)=v1(1)+z1(1); f1(1)=0; f2(1)=0; u(1)=f1(1)+v2(1); J(1)=u(1)-v4(1)*K2;

3. В цикле считаем, значения всех сигналов в системе через время ∆t. Цикл организуется с помощью оператора for().

На вход системы подается сигнал:

DT=6000;

for n=2:1:DT

%вх сигнал

if n<=3000

x(n)=2;

else x(n)=1;

end

end

4. Регулятор описывается следующим образом:

%регулятор

v1(n)=a11*v1(n-1)+a12*e(n)+a13*e(n-1);

r1(n)=v1(n)+K1*e(n);

5. Исполнительный механизм описывается так:

%исполнительный механизм

v2(n)=a21*v2(n-1)+a22*r1(n)+a23*r1(n-1);

6. Ограничитель:

if (v2(n)>=0) && (v2(n)<=4)

vm(n)=v2(n);

elseif v2(n)<0

vm(n)=0;

elseif v2(n)>4

vm(n)=4;

end

7. Внешнее воздействие на систему задается с помощью условия:

f1=0.1*sin(0.11*n*dt);

8. Объект имеет вид:

%объект управления

J(n)=u(n)-v4(n-1)*K2;

v3(n)=a31*v3(n-1)+a32*J(n)+a33*J(n-1);

v4(n)=a41*v4(n-1)+a42*v3(n)+a43*v3(n-1);

9. Шум с равномерным законом распределения в диапазоне [-0.01;0.01]:

%Создаем матрицу в 6000 элементов

%в пределах от 0 до 1

R=rand(1,6000);

a=-0.01;

b=0.01;

%Равномерно распределенная

%случайная величина от -0.01 до 0.01

f2=R*(b-a)+a;

10. По результатам моделирования получаем массивы значений vm(t) и y(t). Текст программы на языке MatLab приведен в приложении. В результате работы программы (см. приложение №1) получили значения массивов vm и y, графики которых приведены на рисунке (рис.1.5):

Рис.1.5








Дата добавления: 2015-09-04; просмотров: 477. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия