Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Моделирование переходного процесса в замкнутом контуре регулирования





Существуют различные способы моделирования на ЭВМ переходных процессов в динамических системах. Выбор алгоритмов моделирования в основном определяется формой математического описания системы и имеющимся программным обеспечением. Если система задана обыкновенными дифференциальными уравнениями, то чаще всего применяют чис­ленные методы интегрирования. Наиболее распространенной в програм­мном обеспечении ЭВМ является реализация метода Рунге – Кутта.

Если динамическая система задана структурной схемой, то переходные процессы в ней удобно строить при помощи метода струк­турного моделирования. Суть метода состоит в том, что ЭВМ по рекуррентным формулам последовательно вычисляет значения выходов отдельных звеньев системы в дискретные равностоящие мо­менты времени.

Для всех линейных звеньев первого порядка формула построения переходного процесса имеет следующий вид:

(1.1)

где a1, a2, a3 – числовые коэффициенты, зависящие от типа и параметров звена, а также от выбранной величины интервала ∆t. Где ∆t – это максимально допустимый период дискретности, при котором достигается высокая точность моделирования переходного процесса. Для высокой точности моделирования переходных процессов в звене ∆t должно быть достаточно малым. Значения коэффициентов a1, a2, a3 и максимально допустимые величины интервалов ∆t для звеньев первого порядка берем из таблицы.

Таблица 1

Передаточная функция звена
 
 
 

 

Для объекта формула выглядит в виде колебательного звена, поэтому звено заменим эквивалентной схемой:

Рис.1.1

 

 


Рис.1.2

Расчетная схема примет вид:

Рис.1.3

Графики u(t) и y(t) представлены на рисунке 1.4


 

Описание блоков схемы:

Signal Builder:

 

Sin wave1: Saturation1:

 

Uniform Random number1: Gain1:

 

Расчетные коэффициенты звеньев:

1) ;

a11=1;

a12=(0,5*dt)/2;

a13=a12;

;

2) ;

a21= exp(-dt/0.1);

a22=2/dt*(0.1*a21-0.1+dt);

a23=-2/dt*(0.1*a21-0.1+a21*dt);

;

3) ;

a31= exp(-dt/1.5);

a32=1/dt*(1.5*a31-1.5+dt);

a33=-1/dt*(1.5*a31-1.5+a31*dt);

;

4) ;

a41=1;

a42=(0,15*dt)/2;

a43=a42;

;

Выбираем наименьший период дискретности, равный 0.005,

В цикле используем значений.

Алгоритм моделирования

Рис 1.4

1. Объявляем массивы, в которых будут храниться значения входов и выходов структурных звеньев.

2. Вводим значения всех сигналов в момент времени t=0. Поэтому

x(1)=2; v1(1)=0; v2(1)=0; v3(1)=0; v4=zeros(1,6000); vm=zeros(1,6000); y=zeros(1,6000); e(1)=x(1)-y(1); z1(1)=K1*e(1); r1(1)=v1(1)+z1(1); f1(1)=0; f2(1)=0; u(1)=f1(1)+v2(1); J(1)=u(1)-v4(1)*K2;

3. В цикле считаем, значения всех сигналов в системе через время ∆t. Цикл организуется с помощью оператора for().

На вход системы подается сигнал:

DT=6000;

for n=2:1:DT

%вх сигнал

if n<=3000

x(n)=2;

else x(n)=1;

end

end

4. Регулятор описывается следующим образом:

%регулятор

v1(n)=a11*v1(n-1)+a12*e(n)+a13*e(n-1);

r1(n)=v1(n)+K1*e(n);

5. Исполнительный механизм описывается так:

%исполнительный механизм

v2(n)=a21*v2(n-1)+a22*r1(n)+a23*r1(n-1);

6. Ограничитель:

if (v2(n)>=0) && (v2(n)<=4)

vm(n)=v2(n);

elseif v2(n)<0

vm(n)=0;

elseif v2(n)>4

vm(n)=4;

end

7. Внешнее воздействие на систему задается с помощью условия:

f1=0.1*sin(0.11*n*dt);

8. Объект имеет вид:

%объект управления

J(n)=u(n)-v4(n-1)*K2;

v3(n)=a31*v3(n-1)+a32*J(n)+a33*J(n-1);

v4(n)=a41*v4(n-1)+a42*v3(n)+a43*v3(n-1);

9. Шум с равномерным законом распределения в диапазоне [-0.01;0.01]:

%Создаем матрицу в 6000 элементов

%в пределах от 0 до 1

R=rand(1,6000);

a=-0.01;

b=0.01;

%Равномерно распределенная

%случайная величина от -0.01 до 0.01

f2=R*(b-a)+a;

10. По результатам моделирования получаем массивы значений vm(t) и y(t). Текст программы на языке MatLab приведен в приложении. В результате работы программы (см. приложение №1) получили значения массивов vm и y, графики которых приведены на рисунке (рис.1.5):

Рис.1.5








Дата добавления: 2015-09-04; просмотров: 477. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия