Студопедия — Ультразвуковая дефектоскопия
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Ультразвуковая дефектоскопия






Ультразвуковая дефектоскопия основана на использовании упругих колебаний, главным образом ультразвукового диапазона частот. Нарушения сплошности или однородности среды влияютна распространение упругих волн в изделии или на режим колебаний изделия. Если например, внутри отливки находится газовая раковина, то колебания, распространяясь по металлу, доходят до нее и меняют свое направление. Индикатор, уловив это изменение, мгновенно показывает, что в отливке дефект.

Ультразвуковому контролю можно подвергать крупногабаритные детали и заготовки, так как глубина проникновения ультразвука в металл может достигать 8–10 м. Аппаратура для ультразвуковой дефектоскопии сравнительно проста и не требует специальных мер по технике безопасности. Поэтому этот вид контроля очень широко распространяется в самых различных областях народного хозяйства, может использоваться в лабораториях, производственных и полевых условий.

Для реализаций всех методов анализа распространения упругих колебаний необходимо иметь излучатель механических колебаний (вибратор) и индикатор, воспринимающий механические колебания испытуемой среды. Ультразвуковые колебания излучаются и принимаются от испытуемого объекта при помощи пьезоэлектрических пластин из кварца, титаната бария, сульфата лития и других материалов, преобразующих электрические колебания в упругие колебания той же частоты и обратно.

 

основой ультразвукового дефектоскопа является комплекс электронной аппаратуры, которая посылает высокочастотный импульс тока в пьезокристаллы; последние, в свою очередь, преобразуют электрический импульс в механические колебания высокой частоты – ультразвук. Колебания, проходя сквозь деталь, могут отразиться от ее противоположной стенки. Если в отливке есть дефекты к на них попадает луч ультразвука, то он меняет свое направление на дефекте.

К числу основных методов ультразвуковой дефектоскопии относятся: эхометод, теневой, резонансный, велосимметричный (собственно ультразвуковые методы), импедансный и метод свободных колебаний (акустические методы).

Эхометод наиболее универсален. Он основан на посылке в изделие коротких импульсов ультразвуковых колебаний, регистрации интенсивности и времени прихода эхосигналов, отраженных от дефектов. Для контроля изделия датчик эхо-дефектов сканирует его поверхность. С помощью этого метода можно обнаружить поверхностные и глубинные дефекты с различной ориентировкой. Для проведения такого контроля созданы различные промышленные установки. Эхосигналы можно видеть на экране осциллоскопа или регистрировать самозаписывающим прибором, который позволяет повысить надежность, объективность, достоверность обнаружения дефектов, а также производительность и воспроизводимость контроля. Чувствительность эхометода весьма высока. В оптимальных условиях контроля на частоте 2–4 МГц можно обнаруживать дефекты, отражающая поверхность которых имеет площадь около 1 мм.

Теневой метод является весьма распространенным в ультразвуковом контроле.

Этод метод обнаружения оптических неоднородностей в прозрачных преломляющих средах и дефектов отражающих поверхностей (напр., зеркал). Т. м. применяют для исследования распределения плотности воздушных потоков, образующихся при обтекании моделей в аэродинамических трубах, используют для проекции на экран изображений (получаемых в виде оптических неоднородностей) в пузырьковых камерах, в телевизионных системах проекции на большой экран и др. Т. м. предложен нем. учёным А. Тёплером в 1867.

Рис. 1. Образование теней на экране.

В т. м. пучок лучей от точечного или щелевого источника света 1 (рис.) линзой или системой линз и зеркал (2–2') направляется через исследуемый объект (3) и фокусируется на непрозрачной преграде (5) с острой кромкой (на т. н. ноже Фуко), так что изображение источника проектируется на самом краю преграды. Если в исследуемом объекте нет оптич. неоднородностей, то все идущие от него лучи задерживаются преградой. При наличии оптич. неоднородности (4) лучи будут рассеиваться ею и часть их, отклонившись, пройдёт выше преграды. Поставив за ней проекционный объектив (6) или окуляр, можно на экране (7) получить изображение неоднородностей (8) или наблюдать их визуально. Иногда вместо точечного источника света и ножа Фуко применяют оптически сопряжённые решётки (растры), перекрывающие ход лучам при отсутствии на их пути неоднородностей. Применяются также решётки со щелями в виде цветных светофильтров, позволяющие нагляднее определять характер оптич. неоднородностей. Получение более грубой (теневой) картины зон резкого изменения оптич. плотностей объекта возможно без перекрытия лучей ножом Фуко или решётками. Просвечивание объекта двумя оптич. системами, установленными под углом друг к другу, позволяет получать стереоскопич. картину распределения неоднородностей в объекте.

Теневой метод – метод обнаружения оптич. неодно-родностей в прозрачных преломляющих средах и дефектов отражающих поверхностей (напр., зеркал). Впервые предложен в 1857 Л. Фуко (L. Foucault) для отражающих поверхностей. В 1867 А. Тендером (A. Toepier) этот метод был усовершенствован при исследовании прозрачных преломляющих сред. Т, м. наз. также шлирен-методом (от нем. Schliere-оптич. неоднородность, свиль, шлир).

В Т. м. пучок лучей от точечного или щелевого источника света 1 (рис.) линзой или системой линз и зеркал (2–2') направляется через исследуемый объект (3) и фокусируется на непрозрачной преграде (5) с острой кромкой (на т. <н. н о ж е Ф у к о), так что изображение источника проецируется на самом краю преграды. Если в исследуемом объекте нет оптич. неоднородностей, то все идущие от него лучи задерживаются преградой. При наличии оптич. неоднородности (4) лучи будут рассеиваться ею и часть их, отклонившись, пройдёт выше преграды. Поставив за ней проекционный объектив (6) или окуляр, можно на экране (7) получить изображение неоднородностей (8) или наблюдать их визуально. Иногда вместо точечного источника света и ножа Фуко применяют оптически сопряжённые решётки (растры), перекрывающие ход лучам в отсутствие на их пути неоднородноcтей. Применяются также решётки со щелями в виде цветных светофильтров, позволяющие нагляднее определять характер оптич. неоднородностей. Получение менее контрастной картины зон изменения оптич. плотностей объекта возможно без перекрытия лучей ножом Фуко или решётками. Просвечивание объекта двумя оптич. системами, установленными под углом друг к другу, позволяет получать стереоскопии, картину распределения неоднородностей в объекте.

Т. м. применяют при исследованиях распределения плотности воздушных потоков, образующихся при обтекании моделей в аэродинамических трубах, используют для проекции на экран изображений (получаемых в виде оптич. неоднородностей) в пузырьковых камерах, в телевиз. системах проекции на большой экран и др.,

Используемая литература

 

1. Грузинов В.П., Грибов В.Д. Экономика предприятия. Учебное пособие. - М.: ИЭП, 2004.

2. И.Н. Ермолов, Ю.Я. Останин. Методы и средства неразрушающего контроля качества. Учебное пособие для вузов.Москва, «Высшая школа», 1988..

3. Фатхутдинов Р.А. Производственный менеджмент: Учебник / Р.А. Фатхутдинов. – 3-е изд., перераб. и доп. – М.: Дашков К, 2002. – 472 с.

 







Дата добавления: 2015-09-04; просмотров: 480. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия