Студопедия — Решение задачи методом ветвей и границ 1 страница
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение задачи методом ветвей и границ 1 страница






Согласно методу для каждой целочисленной переменной возможно задать верхнюю и нижнюю границу, в пределах которых содержится ее оптимальное значение. В данном случае нижняя граница равна нулю. На практике верхний предел не вводят в виде дополнительного ограничения, а учитывают его в процессе решения не явно, то есть к исходным ограничения на практике добавляется ограничение, которое определяется самим методом.

Решаем исходную задачу - Задачу №1 (п.1.3) до получения оптимального решения методом линейного программирования. Воспользуемся итоговой таблицей (Таблица 1.13). Эта таблица и будет исходной для нашей задачи (Таблица 2.1.6).

Таблица 2.1.6

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8
X5         -5     -2  
X1 9/2       -1   -1/2    
X2 7/4       -2   1/4 -1 1/2
X3 5/4       -1   -1/4   1/2
Y -16                

 

Полученное решение не удовлетворяет требованиям целочисленности.

Поэтому составляем относительно любой нецелочисленной переменной две новых порожденных задачи (2 и 3). Выберем переменную x1. ПримемY1 = 0.

Новые ограничения строятся по формуле:

1) х ≤ [х*]

2) x ≥ [х*] + 1

где [х*] – целая часть числа х* (нецелочисленная переменная)

Задача №2:

Добавляется ограничение x1≥5. Тогда задача примет вид:

 

При ограничениях:

x1≥5

и целые.

Выразим допустимый базис в форме Таккера:

x5=-3-(-x1-2x2+0x3+0x4)

x6=-9-(-2x1+0x2+0x3+2x4)

x7=-5-(-x1-x2+x3+2x4)

x8=-2-(-x1+0x2+2x3-x4)

x9=-5-(-x1+0x2+0x3+0x4)

Целевая функция в форме Таккера

Y=0-(4x1+x2-3x3+2x4)

 

Таблица 2.1.7

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9
X5 -3 -1 -2 0 0 1 0 0 0 0
X6 -9 -2 0 0 2 0 1 0 0 0
X7 -5 -1 -1 1 2 0 0 1 0 0
X8 -2 -1 0 2 -1 0 0 0 1 0
X9 -5 -1 0 0 0 0 0 0 0 1
Y 0 4 1 -3 2 0 0 0 0 0

Используем двойственный симплекс-метод. Вводим в базис x1, выводим из базиса x6

Таблица 2.1.8

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9
X5 3/2   -2   -1   -1/2      
X1 9/2       -1   -1/2      
X7 -1/2   -1       -1/2      
X8 5/2       -2   -1/2      
X9 -1/2       -1   -1/2      
Y -18     -3            

Используем двойственный симплекс-метод. Вводим в базис x2, выводим из базиса x7

Таблица 2.1.9

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9
X5 5/2     -2 -3   1/2 -2    
X1 9/2       -1   -1/2      
X2 1/2     -1 -1   1/2 -1    
X8 5/2       -2   -1/2      
X9 -1/2       -1   -1/2      
Y -37/2     -2     3/2      

Используем двойственный симплекс-метод. Вводим в базис x6, выводим из базиса x9

Таблица 2.1.10

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9
X5       -2 -4     -2    
X1                   -1
X2       -1 -2     -1    
X8         -1         -1
X6                   -2
Y -20     -2            

Используем обычный симплекс-метод. Вводим в базис x3, выводим из базиса x8

Таблица 2.1.11

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9
X5         -5     -2    
X1                   -1
X2 3/2       -5/2     -1 1/2 1/2
X3 3/2       -1/2       1/2 -1/2
X6                   -2
Y -17                  

Решение данной задачи: Y=-17; X=(5;3/2;3/2;0;5;1;0;0;0)

 

Решение данной задачи не удовлетворяет требованиям целочисленности, поэтому необходимо простроить две порождённые задачи.

Для образования порожденных задач выберем переменную x2

Задача №4:

Добавляется ограничение x2≥2.

Выразим допустимый базис в форме Таккера:

x5=-3-(-x1-2x2+0x3+0x4)

x6=-9-(-2x1+0x2+0x3+2x4)

x7=-5-(-x1-x2+x3+2x4)

x8=-2-(-x1+0x2+2x3-x4)

x9=-5-(-x1+0x2+0x3+0x4)

x10=-2-(0x1-x2+0x3+0x4)

Целевая функция в форме Таккера

Y=0-(4x1+x2-3x3+2x4)

Таблица 2.1.12

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X5 -3 -1 -2                
X6 -9 -2                  
X7 -5 -1 -1                
X8 -2 -1     -1            
X9 -5 -1                  
X10 -2   -1                
Y       -3              

Используем двойственный симплекс-метод. Вводим в базис x1, выводим из базиса x6

Таблица 2.1.13

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X5 3/2   -2   -1   -1/2        
X1 9/2       -1   -1/2        
X7 -1/2   -1       -1/2        
X8 5/2       -2   -1/2        
X9 -1/2       -1   -1/2        
X10 -2   -1                
Y -18     -3              

Используем двойственный симплекс-метод. Вводим в базис x2, выводим из базиса x10

Таблица 2.1.14

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X5 11/2       -1   -1/2       -2
X1 9/2       -1   -1/2        
X7 3/2           -1/2       -1
X8 5/2       -2   -1/2        
X9 -1/2       -1   -1/2        
X2                     -1
Y -20     -3              

Используем двойственный симплекс-метод. Вводим в базис x6, выводим из базиса x9

Таблица 2.1.15

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X5                   -1 -2
X1                   -1  
X7                   -1 -1
X8         -1         -1  
X6                   -2  
X2                     -1
Y -22     -3              

Используем обычный симплекс-метод. Вводим в базис x3, выводим из базиса x8

Таблица 2.1.16

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X5                   -1 -2
X1                   -1  
X7 1/2       5/2       -1/2 -1/2 -1
X3 3/2       -1/2       1/2 -1/2  
X6                   -2  
X2                     -1
Y -35/2       1/2       3/2 5/2  

Решение данной задачи: Y=-35/2; X=(5;2;3/2;0;6;1;1/2;0;0;0)

 

Решение данной задачи не удовлетворяет требованиям целочисленности, поэтому необходимо простроить две порождённые задачи.

 

Для образования порожденных задач выберем переменную x3

Задача №6:

Добавляется ограничение x3≥2

Выразим допустимый базис в форме Таккера

x5=-3-(-x1-2x2+0x3+0x4)

x6=-9-(-2x1+0x2+0x3+2x4)

x7=-5-(-x1-x2+x3+2x4)

x8=-2-(-x1+0x2+2x3-x4)

x9=-5-(-x1+0x2+0x3+0x4)

x10=-2-(0x1-x2+0x3+0x4)

x11=-2-(0x1+0x2-x3+0x4)

Целевая функция в форме Таккера

Y=0-(4x1+x2-3x3+2x4)

Таблица 2.1.17

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
X5 -3 -1 -2                  
X6 -9 -2                    
X7 -5 -1 -1                  
X8 -2 -1     -1              
X9 -5 -1                    
X10 -2   -1                  
X11 -2     -1                
Y       -3                

Используем двойственный симплекс-метод. Вводим в базис x1, выводим из базиса x6

Таблица 2.1.18

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
X5 3/2   -2   -1   -1/2          
X1 9/2       -1   -1/2          
X7 -1/2   -1       -1/2          
X8 5/2       -2   -1/2          
X9 -1/2       -1   -1/2          
X10 -2   -1                  
X11 -2     -1                
Y -18     -3                

Используем двойственный симплекс-метод. Вводим в базис x2, выводим из базиса x10

Таблица 2.1.19

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
X5 11/2       -1   -1/2       -2  
X1 9/2       -1   -1/2          
X7 3/2           -1/2       -1  
X8 5/2       -2   -1/2          
X9 -1/2       -1   -1/2          
X2                     -1  
X11 -2     -1                
Y -20     -3                

Используем двойственный симплекс-метод. Вводим в базис x3, выводим из базиса x11

Таблица 2.1.20

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
X5 11/2       -1   -1/2       -2  
X1 9/2       -1   -1/2          
X7 -1/2           -1/2       -1  
X8 -3/2       -2   -1/2          
X9 -1/2       -1   -1/2          
X2                     -1  
X3                       -1
Y -14                     -3

Используем двойственный симплекс-метод. Вводим в базис x4, выводим из базиса x8







Дата добавления: 2015-09-07; просмотров: 310. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия