Студопедия — ГЕТЕРОГЕННЫЕ РАВНОВЕСИЯ В ЖИВЫХ СИСТЕМАХ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ГЕТЕРОГЕННЫЕ РАВНОВЕСИЯ В ЖИВЫХ СИСТЕМАХ

 

В организме человека наиболее важные гетерогенные процессы с участием неорганических соединений протекают прежде всего при образовании костной ткани, а также различного вида камней при почечной и желчнокаменной болезнях.

Образование нерастворимых соединений начинается с плазмы крови. В плазме кроме компонентов Н2СО3 и НСО3-, Н2РО4 и НРО42-, обеспечивающих кислотно-основное равновесие, содержатся катионы Са2+, анионы молочной кислоты (лактаты), а также белки. Эти компоненты участвуют в образовании малорастворимого гидрофосфата кальция СаНРО4 и в процессах комплексообразования. Общая концентрация ионов кальция в плазме составляет 2,5·10-3 М, из них 40% связаны в комплекс с белками, 14% - в комплекс с лактатами и цитратами и 46% находятся в свободном ионизованном состоянии. Концентрация свободных ионов Са2+ в плазме крови составляет 1,1·10-3 М, а ионов НРО42- (при рН = 7,4) -2,9·10-4, т. е. плазма крови является слегка пересыщенным раствором СаНРО4: с(Са2+) х с(НРО42-) = 1,1·10-8 ·2,9·10-4 ≈ 3,2·10-7 > Ks = 2,7·10-7. Следовательно, в плазме крови может происходить образование малорастворимого СаНРО4, но процесс его кристаллизации ограничивается образованием ультрамикрокристаллов размером 10-9 – 10-7 м, которые стабилизируются кальциевыми и фосфатными ионами, а также белками, т.е. осадок находится в коллоидном состоянии. Коллоидный СаНРО4 находится в динамическом равновесии с неорганическими ионами плазмы крови.

Особенности образования костной ткани. В клетках костной ткани остеобластах, интенсивно омываемых кровью, происходит минерализация - конечный этап образования костной ткани. Основным минеральным компонентом костной ткани является гидроксифосфат кальция Са5(РО4)3ОН (Ks = 1,6·10-58), часто называемый гидроксиапатитом. Образование костной соли можно отразить общим уравнением:

Это уравнение не передает все промежуточные стадии осаждения различных фосфатов кальция, лежащие в основе формирования костной ткани в организме. В то же время оно убедительно показывает, что щелочность среды (в остеобластах рН = 8,3) и повышенная концентрация фосфат-ионов, возникающая в остеобластах вследствие гидролиза сложных эфиров фосфорной кислоты и углеводов при участии щелочной фосфатазы, способствуют образованию гидроксифосфата кальция. Кристаллизация Са5(РO4)3ОН происходит на органической матрице - белке коллагене, активные группы которого, взаимодействуя с ионами кальция и фосфатов, способствуют образованию правильно организованных ядер кристаллизации, вокруг которых кристаллизуется костная соль. Таким образом, формирование костной ткани в остеобластах происходит в результате контролируемого коллагеном процесса кристаллизации гидроксиапатита из ионов кальция и фосфатов и при участии гетерополисахаридов - хондроитин-сульфатов, называемых также кислыми мукополисахаридами. Хондроитинсульфаты в комплексе с коллагеном связывают катионы кальция и фосфат-анионы, а при отделении от коллагена отдают ему эти ионы.

Наряду с кристаллическим гидроксиапатитом в поверхностных слоях кости образуется некоторое количество аморфного фосфата кальция (Са5(РО4)2), более растворимой соли (Кs = 2,0·10-29), которая постепенно превращается в гидроксиапатит. Поэтому с возрастом содержание аморфного фосфата кальция в костной ткани уменьшается. Считают, что аморфный фосфат кальция является лабильным резервом ионов кальция и фосфатов в организме.

Клетки костной ткани вследствие локальных изменений рН среды, концентрации ионов кальция и фосфатов, активности ферментов щелочной фосфатазы и пирофосфатазы, а также комплексообразующих свойств среды, содержащей лактаты, цитраты и белки, могут легко ускорять процессы либо минерализации, протекающей в остеобластах, либо деминерализации, осуществляемой в остеокластах. Растворение костной ткани, прежде всего за счет аморфного Са3(РО4)2, происходит в области каймы остеокластов, чему способствует локальное повышение кислотности среды и концентрации лактатов, цитратов и белков, которые эффективно связывают ионы кальция в результате комплексообразования. При небольшом повышении содержания протонов кость начинает растворяться, отдавая вначале катионы кальция:

Са5(РО4)3ОН + 2Н+ → Са4Н(РО4)3 + Са2+ + Н2О

а при большей кислотности среды происходит ее полный распад:

Са5(РО4)3ОН + 7Н+ → 3Н2РО4- + 5Са2+ + Н2О

Эти процессы могут легко протекать с зубами. В полости рта в результате жизнедеятельности микробов образуются достаточно сильные кислоты: пировиноградная, молочная, янтарная, - которые разрушают зубы не только вследствие повышения кислотности среды, но и в результате связывания катионов кальция в устойчивые комплексные соединения.

Структура костной ткани обеспечивает достаточно легкий обмен ионами между поверхностью скелета и окружающими тканевыми жидкостями, особенно если учесть, что поверхность костного скелета человека достигает 2000 км. Ежедневно из костей скелета уходит и возвращается в него 700-800 мг кальция. Полная перестройка костной ткани человека происходит примерно каждые 10 лет. При увеличении концентрации свободных ионов Са2+ в плазме крови равновесие сдвигается, это приводит к отложению кальция в костной ткани. При снижении концентрации ионов Са2+ в плазме крови наблюдается растворение минеральных компонентов костной ткани. Например, при рахите из-за недостаточности всасывания ионов Са2+ из желудочно-кишечного тракта или при беременности, когда формируется скелет плода, концентрация ионов Са2+ в плазме крови у больного или у беременной поддерживается не только за счет поступления ионов Са2+ с пищей, но и за счет костной ткани. Таким образом, костную ткань можно рассматривать как кальциевый буфер.

Основными регуляторами кальций-фосфорного обмена в организме человека являются витамин D и гормоны паратирин и калъцитонин. Витамин D регулирует процессы всасывания ионов кальция и фосфатов из кишечника, а паратирин и кальцитонин - процессы их депонирования в костной ткани и выведения через почки. Благодаря взаимодействию регуляторов поддерживается постоянная концентрация этих ионов в сыворотке крови, межклеточной жидкости и тканях.

Костная ткань содержит в небольших количествах катионы практически всех металлов, встречающихся в нашем организме, выполняя функцию минерального депо. В заметных количествах в костную ткань включаются все элементы группы ПА, из которых катионы бериллия и стронция приводят к биологическим изменениям. Даже небольшое количество бериллия в окружающей среде вызывает бериллиоз (бериллиевый рахит), который сопровождается вытеснением ионов Са2+ ионами Ве2+ из костей и их размягчением вследствие меньшего радиуса иона Ве2+.

Ионы стронция также способны замещать ионы Са2+ в костях, но вследствие большего радиуса иона вызывают ломкость костей (стронциевый рахит). Это эндемическое заболевание характерно для регионов с повышенным содержанием стронция в почве. Особую опасность представляет радиоактивный изотоп стронций-90, который, оседая в костях, облучает костный мозг и нарушает костномозговое кроветворение.

Из анионов костная ткань содержит также карбонат и фторид. Последний входит в состав зубной эмали в виде фторид-фосфата кальция Са5(РО4)3F. Замена гидроксид-аниона на фторид-анион значительно повышает твердость и устойчивость зубной эмали к растворению. Другим физико-химическим фактором, защищающим зубы от разрушения, является повышенная концентрация ионов кальция в слюне.

Особенности процесса камнеобразования. В организме человека ионы Са2+ могут образовывать разные малорастворимые соединения, которые называют камнями Камнеобразование - сложный физико-химический процесс, в основе которого лежит не только образование малорастворимых соединений, но и нарушение коллоидного равновесия в тканях организма. Нарушение коллоидного равновесия вызывается уменьшением толщины защитного слоя из ионов стабилизатора и белковой защиты вокруг ультрамикрокристаллов соединения, что приводит к их слипанию с образованием более крупных кристаллов. Таким образом, формирование камней происходит из коллоидных частиц в результате процесса коагуляции.

Почечнокаменная болезнь связана с образованием в мочевых органах камней различного состава. При повышении концентрации мочевой кислоты образуются ее малорастворимые соли - ураты кальция. Их образованию способствует кислая среда мочи (рН < 5). В щелочной моче (рН > 7) могут образовываться малорастворимые фосфаты кальция. Малорастворимые оксалаты кальция могут встречаться как в кислой, так и в щелочной моче. Размеры камней варьируют от очень мелких (песок) до величины крупного яйца.

Основным принципом лечения почечнокаменной болезни является растворение камней за счет извлечения из них ионов кальция комплексообразователями: этилендиаминтетрауксусной кислотой и ее солью трилоном Б, а также лимонной кислотой и ее солями. В народной медицине для связывания катионов кальция и уменьшения отложения солей используют лимоны. Больным с уратными камнями назначают молочно-растительную диету, поскольку она ощелачивает мочу, что препятствует росту уратных камней. С целью их растворения назначают цитраты калия или натрия. При фосфатных камнях рекомендуют кислые минеральные воды и трилон Б для их растворения. При наличии камней из оксалата кальция используют щелочные минеральные воды и трилон Б. В начальной стадии почечнокаменной болезни полезны отвары и настои лекарственных растений, которые содержат вещества, играющие защитную роль, так как препятствуют слипанию ультрамикрокристаллов будущих камней.

Желчнокаменная болезнь связана с образованием холестериновых камней, билирубината кальция, а также карбоната кальция. Отложение карбоната кальция может происходить на стенках кровеносных сосудов, вызывая кальциноз.

Будущему врачу необходимо понимание закономерностей образования и растворения малорастворимых солей для профилактики и лечения различных заболеваний, вызываемых нарушениями минерального обмена в организме человека.




<== предыдущая лекция | следующая лекция ==>
 | Гетерогенные процессы и равновесия

Дата добавления: 2015-09-06; просмотров: 3486. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Studopedia.info - Студопедия - 2014-2024 год . (0.016 сек.) русская версия | украинская версия