Студопедия — Основы сканирующей туннельной микроскопии и спектроскопии
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основы сканирующей туннельной микроскопии и спектроскопии






КРАТКАЯ ТЕОРИЯ

 

Сканирующий туннельный микроскоп (СТМ) - первый из сканирующих зондовых микроскопов. Он был создан в 1981 году Гердом Биннигом и Генрихом Рорером в научно-исследовательской лаборатории фирмы IBM в Цюрихе. Пятью годами позже за это изобретение им присудили Нобелевскую премию по физике. СТМ был первым инструментом, который позволил получить изображение поверхности кремния с атомным разрешением.

В основе СТМ лежит явление квантово-механического туннельного эффекта, заключающегося в способности частиц преодолевать потенциальные барьеры, высота которых больше полной энергии частицы. Туннельный эффект связан с волновыми свойствами частиц. Явление туннельного эффекта можно описать с помощью модели энергетических состояний свободных электронов в металле. В рамках этой модели внутри проводника электронный газ считается свободным, то есть энергия электронов описывается соотношением , где р импульс электрона, a m его масса. Максимальную энергию, которую может иметь электрон в металле при температуре абсолютного нуля, называют уровнем Ферми р). Весь объем металла является для электронов проводимости потенциальной ямой. Основной вклад в туннельный ток вносят электроны, имеющие наибольшую энергию, то есть находящиеся на уровнях, близких к Ер. Вблизи поверхности металла, то есть около границы раздела металл - вакуум, электроны проводимости оказываются вблизи края потенциальной ямы, который служит для них потенциальным барьером, высота которого определяется работой выхода φ;.

Согласно классическим представлениям, прохождение электроном потенциального барьера, имеющего высоту U, большую полной энергии электрона Е, означает появление у него мнимого импульса: . Однако, согласно квантово-механическим представлениям, положение электрона в пространстве описываются волновой функцией, являющейся решением уравнения Шредингера: , где z - координата в направлении по нормали к поверхности металла, h — постоянная Планка. Тогда мнимый импульс определяет волновую функцию электрона, экспоненциально затухающую в направлении, перпендикулярном к поверхности металла:

(1)

Прозрачность потенциального барьера в квазиклассическом приближении определяется вероятностью прохождения частицы сквозь него, вычисляемой как отношение числа прошедших частиц к количеству частиц, упавших на барьер. Для барьеров сложной формы эта величина равна:

При сближении двух металлов на расстояние, меньшее расстояния, на котором волновые функции покинувших потенциальные ямы электронов затухают (1), возникает туннельный контакт металл — вакуум — металл (Рис. 1).

Рис. 1. Зонная диаграмма туннельного контакта двух проводников и огибающие волновые функции электронов в металле и в барьере в приближении эффективной массы

 

В такой системе при наличии внешнего напряжения, называемого напряжением смещения V, между двумя металлами возможно протекание туннельного тока. Если напряжение смещения невелико (eV<<φ), то величина туннельного тока ITпропорциональна приложенному напряжению:

(2)

где d — расстояния между двумя металлами, А и b — константы. Важным выводом из этого соотношения является экспоненциальный характер зависимости величины туннельного тока от ширины туннельного барьера d. С помощью зависимости (2) можно получить, что увеличение ширины туннельного барьера на 1A приводит к уменьшению величины туннельного тока на порядок.

В СТМ используется туннелирование электронов между проводящими зондом и образцом при наличии внешнего напряжения; шириной туннельного перехода является расстояние между зондом и поверхностью образца.

В качестве зонда в СТМ используется остро заточенная металлическая игла. Предельное пространственное разрешение СТМ определяется в основном радиусом закругления острия (которое может достигать нескольких ангстрем) и его механической жесткостью. Если механическая жесткость в продольном и поперечном направлениях оказывается достаточно малой, механические, тепловые и квантовые флуктуации иглы могут существенно ухудшить разрешение СТМ. В качестве материала для зонда обычно используются металлы с высокой твердостью и химической стойкостью: вольфрам или платина.

Между зондом и образцом прикладывается напряжение. Когда кончик зонда оказывается на расстоянии около 10 Å от образца, электроны из образца начинают туннелировать через промежуток в иглу или наоборот, в зависимости от знака напряжения. Возникающий в результате ток туннелирования изменяется с зазором зонд-образец экспоненциально и измеряется туннельным сенсором 5 (Рис. 2).

Рис. 2. Схема сканирующего туннельного микроскопа. Обозначения:

1 - зонд; 2 - образец; 3 - пьезоэлектрические двигатели х, у, z; 4 - генератор развертки х, у; 5 - туннельный сенсор; 6 - компаратор; 7 - электронная цепь обратной связи; 8 - компьютер; 9 - изображение z(x,y)

В режиме постоянного тока (Рис. 3 а) величина туннельного тока между зондом и образцом поддерживается постоянной за счет приближения и отвода зонда системой обратной связи. Сигнал для получения изображения топографии поверхности берется из канала z-пьезопривода. Альтернативный метод регистрации, применяемый при исследовании малых достаточно плоских участков (атомно-гладких поверхностей), — работа в режиме с очень большой постоянной времени цепи обратной связи, так что при сканировании среднее расстояние острие - образец поддерживается постоянным (Рис. 3 б) и регистрируются быстрые изменения туннельного тока («токовое изображение»). Этот способ позволяет максимально использовать быстродействие системы регистрации и получать изображения «в реальном времени».

Рис. 3. Режимы постоянного тока (а) и постоянной высоты (б)







Дата добавления: 2015-09-06; просмотров: 678. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Studopedia.info - Студопедия - 2014-2024 год . (0.016 сек.) русская версия | украинская версия