Студопедия — Занятие 14. Тригонометрические ряды Фурье.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Занятие 14. Тригонометрические ряды Фурье.






Определение 1. Ряд вида

(14.1)

называется тригонометрическим рядом. (Здесь знак суммы относится к обоим слагаемым, стоящим справа от него.)

Частичные суммы тригонометрического ряда являются линейными комбинациями функций из системы

(14.2)

Определение 2. Система функций (14.2) называется тригонометрической системой.

Лемма 1. Тригонометрическая система (14.2) имеет следующие свойства.

1. Интеграл на отрезке от произведения двух различных функций этой системы равен нулю. (Это свойство называется свойством ортогональности системы (14.2)), т.е.

(14.3)

2. (14.4)

 

Теорема 14.1. Пусть

(14.5)

и ряд (14.5) сходится равномерно на отрезке , тогда

(14.6)

Заметим, что формулы (14.6) имеют смысл не только для непрерывных на отрезке функций, а также и для функций, интегралы от которых сходятся абсолютно на этом отрезке. (Говорят, что сходится абсолютно, если сходится .) Этому условию удовлетворяют, в частности, функции, имеющие на отрезке конечное число разрывов первого рода и кусочно-дифференцируемые на нём.

Если в точке существуют конечные пределы , и односторонние производные и , то ряд Фурье функции сходится в этой точке и его сумма равна

. (14.7)

Если существуют конечные пределы , и односторонние производные и , то ряд Фурье функции сходится в точках и и его сумма в этих точках равна

. (14.8)

В точках непрерывности функции значения суммы ряда совпадают со значениями функции.

 

 

Пример 14.1. Разложить в ряд Фурье функцию

Решение. Вычислим коэффициенты разложения:

 

 

,

,

Таким образом, при чётном и при нечётном, т.е.

,

следовательно,

.

Полученный ряд сходится к при и , а в точке , в соответствии с (14.7),

 

. (14.9)

 

Пример 14.2. Функцию , заданную в промежутке , разложить в ряд Фурье по косинусам.

Решение. Продолжив функцию в промежуток чётным образом, получим:

.

В этом случае .

,

т.е.

,

следовательно,

Пример 14.3. Разложить в ряд Фурье в интервале функцию

.







Дата добавления: 2015-09-07; просмотров: 415. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия