Студопедия — Теоретические сведения. где – непрерывная функция
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теоретические сведения. где – непрерывная функция






Пусть дано уравнение

, (3.1)

где – непрерывная функция. Требуется вычислить действительный корень уравнения, находящийся на отрезке . Приводим заданное уравнение к эквивалентному виду

, (3.2)

где – некоторая непрерывная на отрезке функция.

Выбираем произвольное и подставляем его в правую часть равенства (3.2):

.

Аналогично получаем итерационную последовательность:

;

;

…………..

.

Доказано, что если итерационная последовательность , , ,…, ,… сходится, то её пределом является корень уравнения (3.2), а значит, и корень уравнения (3.1), так как уравнения (3.1) и (3.2) равносильны.

Для сходимости итерационного процесса достаточно исходное уравнение привести к виду так, чтобы выполнялось условие

, (3.3)

где . При этом итерационная последовательность сходится независимо от выбора .

Итерации имеют геометрическую интерпретацию. Решение уравнения (3.2) является абсциссой точки пересечения прямой y = x и кривой y = φ(x). Геометрически видно, что если в окрестности решения выполняются неравенства 0 < φ’(x) ≤ М < 1, то последовательность {xK} монотонно сходится к , причем с той стороны, с которой расположено начальное приближение (рис. 3.1).

 

Рис. 3.1. Приближение к корню с одной стороны

 

В случае −1 < −M ≤ φ’(x) < 0 последовательные приближения расположены поочередно с разных сторон от решения (рис. 3.2).

 

Рис. 3.2. Приближение к корню с разных сторон

 

Уравнение можно преобразовать к виду разными способами, лишь бы функция удовлетворяла условию (3.3). Например, уравнение заменяем равносильным . В этом случае . Параметр выбираем так, чтобы ½ при .

Пример 1. Привести уравнение к виду, пригодному для применения метода итераций. Единственный действительный корень заданного уравнения находится на отрезке , так как , .

Приводим исходное уравнение к виду .В этом случае . Тогда , при .

Таким образом, достаточное условие сходимости итерационного процесса выполняется. Метод итераций применим для решения полученного уравнения. Выбираем произвольное , например, , и начинаем процесс метода итераций.

Пример 2. Привести уравнение к виду, пригодному для применения метода итераций.

Единственный корень заданного уравнения находится на отрезке . Рассмотренный в примере 1 способ в данном случае неприменим, так как при этом не удовлетворяется достаточное условие сходимости итерационного процесса. Заменяем исходное уравнение равносильным:

.

В этом случае

, .

Параметр находим из условия ê при , т.е. или при . Отсюда . Полагаем, например, . Исходное уравнение преобразуем к виду

,

причем при .

Выбираем произвольное . Пусть , вычисляем . Подставляя в правую часть равенства, получаем и т.д. Вычисления производим до тех пор, пока выполнится неравенство .

Скорость сходимости итерационного процесса определяется неравенством

,

где – точное решение уравнения.

Оценка погрешности метода простой итерации записывается в виде

,

где – заданная точность решения. В частности, при и величина будет приближенным значением корня с точностью до , т.е. .







Дата добавления: 2015-10-02; просмотров: 419. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия