Студопедия — Решение систем линейных уравнений с использованием матриц-строк.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение систем линейных уравнений с использованием матриц-строк.






Многочлен — это алгебраическое выражение, которое является суммой опреде­ленного количества элементов. Многочлен с одним элементом называется одно­членом, с двумя элементами — двучленом, с тремя — трехчленом и т.д. Выраже­ние 4 * А ^ 3 + А ^ 2 +А+2 является многочленом, имеющим четыре члена. Члены отделены знаком (+).

Многочлены имеют различные степени. Степень многочлена определяется зна­чением наибольшей степени любого из элементов. Степенью элемента является сумма показателей переменных, содержащихся в элементе. Показанное выше вы­ражение является многочленом третьей степени, так как элемент 4 * А^ 3 имеет третью степень, и это наивысшая степень среди всех элементов многочлена. Если бы элемент был равен 4*A^З*B^62*C, мы бы получили многочлен шестой степени, так как сумма показателей переменных (3+2+1) равна 6.

Многочлен первой степени называется также линейным уравнением и графи­чески задается прямой линией. Многочлен второй степени называется квадрат­ным уравнением и на графике представляет собой параболу. Многочлены третьей, четвертой и пятой степени называются соответственно кубическим уравнением, уравнением четвертой степени, уравнением пятой степени и т.д. Графики много­членов третьей степени и выше довольно сложны. Многочлены могут иметь лю­бое число элементов и любую степень, мы будем работать только с линейными уравнениями, т.е. многочленами первой степени. Решить систему линейных уравнений можно с помощью процедуры Гаусса-Жордана, или, что то же самое, метода гауссовского исключения. Чтобы использовать этот метод, мы должны сначала создать расширен­ную матрицу, объединив матрицу коэффициентов и столбец свободных чле­нов. Затем следует произвести элементарные преобразования для получения единичной матрицы. С помощью элементарных преобразований мы получаем более простую, но эквивалентную первоначальной, матрицу. Элементарные преобразования производятся посредством построчных операций (мы опи­шем их ниже). Единичная матрица является квадратной матрицей коэффициентов, где все элементы равны нулю, кроме диагональной линии элементов, которая начинает­ся в верхнем левом углу. Для матрицы коэффициентов «шесть на шесть» единич­ная матрица будет выглядеть следующим образом:

          о
          о
          о
          о
          о
        о  

 

Матрица, где число строк равно числу столбцов, называется квадратной матри­цей. Благодаря обобщенной форме задачи минимизации V для данного Е, мы все­гда будем иметь дело с квадратными матрицами коэффициентов. Единичная матрица, полученная с помощью построчных операций, эквива­лентна первоначальной матрице коэффициентов. Ответы для нашей системы уравнений можно получить из крайнего правого вектора-столбца. Единица в пер­вой строке единичной матрицы соответствует переменной X,, поэтому значение на пересечении крайнего правого столбца и первой строки будет ответом для X1 Таким же образом на пересечении крайнего правого столбца и второй строки со­держится ответ для Х2 так как единица во второй строке соответствует Х2 Ис­пользуя построчные операции, мы можем совершать элементарные преобразова­ния в первоначальной матрице, пока не получим единичную матрицу. Из единич­ной матрицы можно получить ответы для весов X1 ... ХN—компонентов портфеля. Найденные веса дадут портфель с минимальной дисперсией V для дан­ного уровня ожидаемой прибыли Е1.

.

Можно проводить три типа построчных операций:

1. Поменять местами любые две строки.

2. Умножить любую строку на ненулевую постоянную.

3. Любую строку умножить на ненулевую постоянную и прибавить к любой другой строке.

С помощью этих трех операций мы попытаемся преобразовать исходную матрицу коэффициентов в единичную матрицу

В расширенной матрице проведем элементарное преобразование номер 1, ис­пользуя правило номер 2 построчных операций. Мы возьмем значение на пересече­нии первой строки и первого столбца (оно равно 0,095) и преобразуем его в едини­цу. Для этого умножим первую строку на 1/0,095. В результате, значение на пересе­чении первой строки и первого столбца станет равно единице. Остальные значения в первой сроке изменятся соответствующим образом.

Проведем элементарное преобразование номер 2. Для этого задействуем прави­ло номер 3 построчных операций (для всех строк, кроме первой). Предварительно для всех строк проведем элементарное преобразование номер 1, преобразовав чис­ло, стоящее в первом столбце каждой строки, в единицу. Затем все числа матрицы, кроме чисел первой строки, умножим на -1. После этого можно перейти к непос­редственному применению правила номер 3. Для этого прибавим первую строку к каждой строке матрицы: первое число первой строки прибавим к первому числу второй строки, второе число первой строки ко второму числу второй строки и так далее. После этого преобразования мы получим нули в первом столбце (во всех строках, кроме первой).

Теперь первый столбец уже является столбцом единичной матрицы. С помо­щью элементарного преобразования номер 3, используя правило номер 2 пост­рочных операций, преобразуем значения на пересечении второй строки и второго столбца в единицу. Посредством элементарного преобразования 4, используя правило номер 3 построчных операций, преобразуем в нули значения второго столбца (для всех строк, кроме второй).

Таким образом, с помощью правила номер 2 и правила номер 3 построчных операций мы преобразуем значения по диагонали в единицы и получим единич­ную матрицу. Столбец с правой стороны будет содержать решение.







Дата добавления: 2015-10-12; просмотров: 380. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Studopedia.info - Студопедия - 2014-2024 год . (0.014 сек.) русская версия | украинская версия