Студопедия — Нанесение тонких пленок
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Нанесение тонких пленок






Тонкие пленки широко используются как в полупроводниковых, так и в гибридныхИМС. Они являются материалом проводников соединений, резисторов, конденсаторов, изоляции. Помимо требуемых электрофизических параметров пленки должны иметь хорошую адгезию (сцепление) к материалу, на который они наносятся, например, к кремнию и двуокиси кремния в полупроводниковых ИМС, к диэлектрической подложке или ранее нанесенной пленке в ГИС. Не все материалы имеют хорошую адгезию с подложками (например, золото с кремнием). Тогда на подложку сначала наносится тонкий подслой с хорошей адгезией, а на него – основной материал, имеющий хорошую адгезию с подслоем.

Важным требованием является близкое значение коэффициентов термического расширения (ТКР) пленок и подложек, что предотвращает повреждение пленок при колебаниях температуры.

Термическое вакуумное испарение (термическое вакуумное напыление). Наносимое вещество вместе с подложкой помещается в вакуумную камеру. В результате нагревания происходит испарение и осаждение вещества на подложке. скорость испарения и роста пленок сильно зависят от температуры. Осаждение происходит с достаточно высокой скоростью при достижении условной температуры испарения Тусл, при которой давление паров вещества равно 1,3 Па. В зависимости от температуры плавления вещества Тпл, могут выполняться разные условия: если Тусл < Тпл (Cr, Mo,Si, W), то вещества интенсивно испаряются из твердого состояния; если

Тусл > Тпл (Al, Au, Pt), - то из жидкого.

Нагрев испаряемых материалов может быть прямой или косвенный: при прямом нагреве электрический ток пропускается через металлический материал, или используется индукционный нагрев, или нагрев электронной бомбардировкой. Косвенный нагрев происходит за счет теплопередачи от испарителя (тигля, спирали и др.). Осаждение ведется на подогретую подложку, температура которой 200 – 400 ℃. При слишком низкой температуре осаждаемые атомы не могут мигрировать по поверхности, при этом могут образовываться островки разной толщины. Слишком высокая температура вызывает обратное испарение осаждаемых атомов с подложки.

Высокий вакуум (10-4 – 10-5 Па) обеспечивает чистоту пленки. Время осаждения (от нескольких секунд до нескольких минут) регулируется заслонками, преграждающими доступ испаряемого вещества к подложке.

Недостатком этого метода является невысокая воспроизводимость параметров пленки из-за плохого контроля температуры и кратковременности процесса, а также невозможность воспроизведения химического состава испаряемого вещества (сплава или химического соединения) из-за разной скорости испарения входящих в него компонентов. Поэтому метод используется в основном для чистых металлов.

Распыление ионной бомбардировкой. Процесс производится в вакуумной камере, заполненной инертным газом (например, аргоном), котором возбуждается газовый разряд.Положительные ионы бомбардируют распыляемый материал (мишень), выбивая из него атомы или молекул, которые осаждаются на подложке. На пути к подложке выбитые атомы рассеиваются на атомах инертного газа. Это уменьшает скорость осаждения, но увеличивает равномерность осаждения пленки на подложке, этому способствует и большая площадь мишени. Скорость и время распыления (от нескольких минут до нескольких часов) регулируются напряжением на электродах и могут поддерживаться с высокой точностью.

По сравнению с термическим вакуумным испарением этот метод позволяет получать пленки тугоплавких металлов, наносить диэлектрические пленки, соединения и сплавы, точно выдерживать их состав; обеспечивать равномерность и точное воспроизведение толщины пленок на подложках большой площади. Распыление ионной бомбардировкой имеет несколько видов: катодное распыление, ионно-плазменное распыление и высокочастотное распыление.

а). При катодном распылении распыляемый материал (металл) является электродом катода 1 – рис. 4.13. На заземленном аноде 2 располагается подложка 3. Давление газа в камере 4 составляет 1 – 10 Па. На катод подается высокое отрицательное напряжение 2 – 5 кВ. Возникает газовый разряд, при котором образуется электронно-ионная плазма. Положительные ионы образуются из-за ионизации атомов газа электронами. Ионы, ускоряясь в сильном электрическом поле, выбивают из катода электроны, необходимые для поддержания разряда, а также атомы, которые диффундируют через газ, осаждаются на подложке. Если перпендикулярно электрическому полю Е между катодом и анодом приложит постоянное магнитное поле В, то оно искривит траекторию электронов, вылетевших из катода.

 

 

Рис. 4.13. Схема катодного распыления

 

Электроны, двигаясь к аноду по сложным петлеобразным траекториям, подобным траекториям электронов в магнетронах СВЧ (рис. 4.14) теряют энергию на ионизацию газа.

 

 

Рис. 4.14. Движение частиц в магнетронной

распылительной системе:

⊝ - электрон, ⊕ - ио н,

 

- атом, выбитый из катода

 

Увеличение длины пути электрона приводит к образованию большего числа ионов, чем в отсутствии магнитного поля, что способствует повышению скорости распыления или (при той же скорости) позволяет снизить давление газа и загрязнение пленки. В этом случае электроны достигают анода с малой скоростью, это снижает нагревание анода и предотвращает испарение осаждаемой пленки, устраняя возможность ее рекристаллизации и изменения химического состава. Описанная система называется магнетронной распылительной системой.

При реактивном катодном распылении в камеру вводится некоторое количество газа, образующему химические соединения с распыляемым материалом. Например, добавка кислорода при распылении тантала или кремния дает возможность получить диэлектрические пленки Ta2O5, SiO2.

Недостатком катодного распыления является загрязненность пленок из-за сравнительно низкого вакуума, а также невозможность напыления через металлический трафарет (маску), так как он искажает электрическое поле у анода.

б). При ионно-плазменном напылении давление газа в камере Р ≈ 10-2 Па значительно ниже, чем при катодном распылении, это уменьшает загрязнение пленок. Длина свободного пробега выбитых из мишени атомов превышает расстояние мишень – подложка, поэтому отсутствует рассеяние атомов, что повышает скорость осаждения. Получить большую концентрацию ионов в условиях пониженного давления можно, используя накаливаемый катод – источник электронов (рис. 4.15). В нижней части камеры 1 расположен вольфрамовый катод 2, а в верхней – анод 3, на который положительное напряжение составляет около 100 В. На мишень 4 подается высокое отрицательное напряжение 2 – 3 кВ. Напротив расположена подложка 5 с нагревателем 6. Для увеличения концентрации ионов прикладывается магнитное поле, направленное от анода к катоду. Электроны, вылетающие из катода под небольшими углами к вектору магнитного поля, двигаются к аноду по спиральным траекториям вокруг оси разряда, проходя путь, значительно больший расстояния катод – анод, создавая на этом пути гораздо больше ионов.

Степень ионизации газа на 1 – 2 порядка выше, чем при катодном распылении. Начало и конец процесса определяются подачей и отключением напряжения на мишени. Перед началом напыления проводится ионная очистка поверхности подложки (ионное травление). Аналогично можно провести очистку мишени. Очистка мишени и подложки способствует повышению чистоты пленок и хорошей адгезии к подложке.

В отличие от катодного распыления подложка не влияет на напряженность электрического поля и скорость распыления, это обеспечивает равномерность толщины пленки и возможность напыления через металлический трафарет, накладываемый на подложку. В ГИС это дает возможность одновременно с напылением формировать рисунок пленки.

 

 

Рис. 4.15. Схема ионно-плазменного напыления

 

Рассмотренные методы распыления на постоянном токе применяют для напыления металлических и полупроводниковых материалов

На диэлектрической мишени попадающие на нее положительные ионы не могут нейтрализоваться электронами из внешней цепи, в результате потенциал мишени повышается и процесс прекращается.

в). Для распыления диэлектрических мишеней используется высокочастотное распыление, при котором на мишени периодически меняется знак потенциала. На установке, изображенной на рис. 4.15 это достигается тем, что мишень 4 представляет собой диэлектрический слой, нанесенный на металлическую пластину, на которую помимо постоянного подают переменное высокочастотное напряжение большой амплитуды. При отрицательном напряжении мишень бомбардируется положительными ионами и распыляется, при положительном – на мишень поступает поток электронов, нейтрализующих заряд ионов (при этом распыления не происходит вследствие малой массы и энергии электронов).


Химическое осаждение из газовой фазы - в технологии полупроводниковых ИМС используется для получения пленок поликристаллического кремния и диэлектриков SiO2, Si3N4. Осаждение происходит в результате химической реакции в газовой фазе при повышенной температуре и осуществляется в эпитаксиальных или диффузионных установках.

Для осаждения поликремния на поверхность SiO2 используется реакция пиролиза (разложения) силана:

 

SiH4 → Si + H2,

 

которая протекает при Т = 650 ℃.

Для осаждения двуокиси кремния используется окисление силана:

 

SiH4 + O2 → SiO2 + H2O,

 

протекающее при Т = 200 – 350 ℃.

Нитрид кремния получают взаимодействием силана с аммиаком:

SiH4 + NH3 → Si3N4 + H2

 

при Т = 800 ℃.

К достоинствам осаждения из газовой фазы относятся простота, технологическая совместимость с другими процессами создания полупроводниковых ИМС (эпитаксией, диффузией), невысокая температура, благодаря чему отсутствует нежелательная разгонка примесей.

Скорость осаждения определяется температурой и концентрацией реагирующих газов в потоке нейтрального газа-носителя и составляет несколько сотых долй микрометра в минуту.

 








Дата добавления: 2015-10-12; просмотров: 696. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия