Студопедия Главная Случайная страница Задать вопрос

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Функция случайной величины и ошибка в ее определении





В большинстве случаев искомая величина не может быть измерена непосредственно, а определяется через другие, которые можно измерить. Например, для определения объема шара мы измеряем его диаметр d и потом вычисляем объем . Таким образом, объем в данном случае есть функция диаметра, а сам диаметр измерен с некоторой ошибкой и представляет собой целый ряд значений внутри интервала, ширина которого этой ошибкой обусловлена.

Во всех подобных случаях мы имеем дело с функцией случайной величины, т. к. истинного значения аргумента (в данном случае диаметра) мы не знаем.

Но если значение аргумента находится с определенной степенью точности, то и зависящая от него функция также определяется с ошибкой. На рис.2 представлен график зависимости V от d, из которого видно, что интервалу d значений аргумента соответствует интервал ∆V значений функции. Среднему же значению диаметра dср будет соответствовать среднее значение объема Vср.

Обозначим в общем случае функцию случайной величины буквой Z, а аргумент – буквой А, тогда . Вид этой функции может быть различным. Наиболее распространенные варианты подобных функций и указания, как найти ошибку в ее определении ∆Z, если задана ошибка в определении аргумента ∆А, даны в Приложении 4. В общем случае Z = Z(A): абсолютная погрешность измерения будет равна , где определяет степень зависимости Z от А в интересующей нас точке.






Дата добавления: 2014-12-06; просмотров: 190. Нарушение авторских прав

Studopedia.info - Студопедия - 2014-2017 год . (0.006 сек.) русская версия | украинская версия