Студопедия — Теоретические сведения. Вспоминая историю науки, отметим, что в 50-60-х годах XX века началась новая научная революция - достижения физики
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теоретические сведения. Вспоминая историю науки, отметим, что в 50-60-х годах XX века началась новая научная революция - достижения физики






Вспоминая историю науки, отметим, что в 50-60-х годах XX века началась новая научная революция - достижения физики, математики, информатики и техники открыли перспективы реализации крупнейших проектов - овладение атомной энергией и создание атомного оружия, освоение космического пространства и поиск новых фундаментальных законов природы.

Осуществление проектов потребовало огромных затрат ресурсов, детального анализа возможных путей протекания физических явлений и технологических процессов, тщательного отбора наилучших вариантов постановки дорогостоящих экспериментов. Сложность возникающих за-дач делала их недоступными для стандартных приемов теоретической и экспериментальной физики, а необходимость решения проблем стимулировала возникновение вычислительного эксперимента в физике как новой методологии научных исследований.

 

Таблица 2. Аналогия между вычислительным и натурным экспериментами

 

Натурный эксперимент Вычислительный эксперимент
Физический объект Математическая модель
Физический прибор Программа для компьютера
Калибровка Тестирование программы
Измерения Вычисления
Анализ результатов Анализ результатов

 

При постановке компьютерного эксперимента необходимо придерживать­ся определенной схемы: формализация вербального описания или математическое моделирование, например, составление дифференциальных уравнений в соответствии с условиями задачи; поиск алгоритма решения; разработка программного обеспечения (программы); тест программы по принципу соответствия (в предельном случае, при стремлении характерного параметра к нулю, данная «новая» задача переходит в «старую» с известным аналитическим решением; «запуск» программы (вычисления), интерпретация и анализ полученных результатов.

«День рождения» вычислительного эксперимента точно не установлен. Первые работы «новым методом» («третьим методом») приходятся на 50-е гг. ХХ века. А вот время, когда появились серьезные результаты, фиксируются вполне официально_ 1968 г. Госкомитет по делам открытий и изобретений засвидетельствовал открытие явления в моделировании работы МГД- генератора (существование температурного или токового слоя_ Т-слоя в нелинейной плазме), которые никто не наблюдал (А.Н. Тихонов, А.А. Самарский и др.). Дальнейшие усилия были направлены на подтверждение результатов компьютерного моделирования. Знаменательный факт_ вычислительный эксперимент предшествовал натурному, определяя кратчайшие пути к успеху.

Первоначальную формулировку задачи о «случайных блужданиях» предло­жил Пирсон в 1906 г. Если человек случайным образом делает N шагов равной длины от фо­нарного столба в произвольных направлениях, то, как далеко отойдет он от этого столба? (рис.4).

Со времени такой формулировки статистической задачи модели случайного блуждания получили широкое распространение в физике, биологии и общественных науках. Хорошо знакомыми по учеб­никам приложениями являются диффузия молекул в газе и броуновское движение коллоидных взвесей в жидкости, моделирование длинных полимер­ных цепочек.

Рис. 4. Иллюстрация постановки задачи о случайных блужданиях

 

Для простоты рассмотрим одномерные случайные блуждания частицы с постоянным шагом. Пусть в результате n таких последовательных шагов частица оказалась в точке с координатой . Тогда после очередного шага она попадет в точку . Поскольку при равновероятных блужданиях средняя координата найдем вели­чину, которой можно охарактеризовать среднее удаление частицы. Очевидно, - это среднее значение квадрата смещения .

Используя метод математической индукции, на основе полученного соотношения легко показать, что . Предположить данную зависимость можно из результатов реального или виртуального компьютерного эксперимента (рис.5). Заметим, что реальный эксперимент проводился несколько часов с десятью «частицами», в то время как более точный вычислительный эксперимент длится несколько минут при значительно больших параметрах и легко воспроизводится на современном ПК.

 

Рис. 5. Закон случайных блужданий

в вычислительном эксперименте

Таким образом, среднее значение квадрата смещения пропорцио­нально числу шагов, а если шаги совершаются за одинаковые промежутки времени, следовательно, . Диффузия частиц такова, что сред­ний квадратсмещения растет пропорционально времени. Другими словами, квадратный корень растет со временем пропор­ционально . Эта величина, называемая средним квадратичным значением координаты, не равна среднему значению расстоя­ния частицы от начала координат спустя промежуток времени t и в многомерном случае.

Поучительно рассмотреть непрерывный предел модели одномерного слу­чайного блуждания. Если с равной вероят­ностью делается шаг вправо или влево, то случайное блуждание можно переписать в виде простого «порождающего» уравнения или с учетом длины и времени шага для плотности вероятности имеем . После несложных преобразований получим конечно-разностное уравнение диффузии, которое в пределе и переходит в дифференциальное уравнение в частных производных , где коэффициент диффузии .

Рис. 6. Нормальный закон диффузии в трехмерной графике

Решением данного уравнения для свободного пространства является распределение Гаусса (нормальный закон):

(рис.).

Таким образом, , а . Обобщение решения на d- мерный случай дает: .

 







Дата добавления: 2014-11-10; просмотров: 712. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия