Студопедия — ГЕНЕТИЧЕСКИЙ МАТЕРИАЛ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ГЕНЕТИЧЕСКИЙ МАТЕРИАЛ






 

В соответствии с современными представлениями генетическим материалом являются нуклеиновые кислоты.

Нуклеиновые кислоты были обнаружены в ядрах клеток в 1869 г. швейцарским физиологом Фридрихом Мишером. Это открытие является настолько важным, что оно заслуживает приведения здесь цитаты из работы Ф. Мишера, в которой он описывал свои опыты, а именно: «Обрабатывая клетки гноя слабыми щелочными растворами, я получил в результате нейтрализации раствора осадок, который не растворялся ни в воде, ни в уксусной кислоте, ни в разведенной соляной кислоте, ни в обычном солевом растворе и который не мог принадлежать ни к одному из белков, известных в настоящее время». Обнаруженное вещество Ф. Мишер назвал «нуклеином». Как считают, он не мог знать, что открыл ДНК и что оказался в начале исследований ДНК. Но, определяя заслуги Ф. Мишера в качестве первооткрывателя нуклеиновых кислот, нельзя не отметить, что первое предположение о роли нуклеиновых кислот в качестве генетического материала было сформулировано в 1914 г. доцентом Петербургского университета А. Щепотьевым.

Материалом, из которого состоят гены, является дезоксирибо-нуклеиновая кислота (ДНК), а материалом, обеспечивающим декодирование генетической информации, являются РНК. У отдельных вирусов первичным генетическим материалом является рибонуклеиновая кислота (РНК). Таким образом, нуклеиновые кислоты являются хранителями (носителями) и переносчиками генетической информации.

Сложившиеся представления о том, что первичным генетическим материалом у абсолютного большинства живых существ является ДНК, основаны на ряде прямых и косвенных доказательств, среди которых исторически самым первым прямым доказательством генетической роли ДНК является установленная еще в 1944 г. способность ДНК трансформировать пневмококки из одного типа в другой. К настоящему времени трансформация установлена у микроорганизмов многих видов. В 50-е годы прямые доказательства генетической специфичности ДНК были получены также в результате изучения размножения бактериальных вирусов в бактериях и переноса ими генетической информации с помощью ДНК от одних бактериальных клеток к другим. Это явление известно под названием трансдукции. Тогда же было установлено, что перенос ДНК от одних бактериальных клеток к другим осуществляется также в процессе конъюгации бактерий. К настоящему времени трансдукция и конъюгация изучены у многих видов бактерий. В совокупности, на трансформации, трансдукции и конъюгации основывается генетический анализ микроорганизмов.

Решающее прямое доказательство генетической роли ДНК было обеспечено разработкой методов генной инженерии, создавшей возможность конструирования рекомбинантных молекул ДНК с заданными свойствами. К настоящему времени возможности генной инженерии показаны на примере клонирования многих генов самых различных организмов. Что касается косвенных доказательств, то они известны очень давно и их несколько. Для ДНК характерна специфичность локализации в клетках, поскольку она обнаруживается только в ядрах клеток (хромосомах), митохондриях (у животных) и хлоропластах (у растений). У многих микроорганизмов ДНК локализована только в ядерной области (нуклеоиде) или в цитоплазме в виде плазмид. Для организмов каждого вида характерно определенное количество ДНК на клетку (табл. 10).

Таблица 10

Количество нуклеотидов в геномах различных организмов*

 

Организмы Гаплоидньгй ядерный геном Митохондри-альныи геном  
Гаплоидный набор хромосом Нуклеотидные пары  
Нуклеотидные пары  
Аденовирус     3, 0 х 105 -З.З x 105      
Фаг Т2     2, 0 x 104      
Фаг Т5     1, 3 x 105      
Е. coli     4, 5 х 10е      
Дрожжи (Saccharomyces cerevisiae)   1, 8 х 107 7, 4 х 104  
(A. tholiana)     7, 0 х 107      
Дрозофила (D. melanogaster)   2, 7 х 107 1, 8 х 104  
Лягушка (Rana pipiens)   6, 0 х 109 1, 6 х104  
Мышь (Mus musculus)     3, 0 х 109 1, 5 х 104  
Крыса (Rattus norwegius)   6, 0 х 109 1, 5 х 104  
Человек (Homo sapiens)   5, 8 х 109 1, 5 х 104  

 

*1000 пар оснований = 617 500 дальтон

 

Данные, которые приведены в табл. 10, показывают, что, начиная с вирусов, содержание ДНК прогрессивно повышается у бактерий, а затем и у позвоночных и, таким образом, находится в прямой связи со сложностью организации и поведения организмов. Известны, однако, исключения.

Для организмов каждого вида характерно то, что количество ДНК в соматических (диплоидных) клетках является вдвое большим, чем в половых (гаплоидных). Будучи постоянным на клетку у организмов всех видов, содержание ДНК не подвержено влиянию со стороны физиологических факторов, включая пол и старение, а также неблагоприятных воздействий, например, голодания, повышения или понижения температуры. Косвенными доказательствами генетической специфичности ДНК являются также данные о способности искусственно синтезированных аналогов азотистых оснований ДНК вызывать наследственные изменения клеток вследствие прямого включения их в ДНК клеток и данные о том, что мутагенный эффект УФ-излучения тесно связан со спектром поглощения его молекулами ДНК.

 







Дата добавления: 2014-11-12; просмотров: 740. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия