Студопедия — ТЕМА 6. Распределение выборочных характеристик нормальной совокупности
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ТЕМА 6. Распределение выборочных характеристик нормальной совокупности






В данной теме будет рассмотрена нормальная генеральная совокупность и найдено распределение ее важнейших характеристик. Полученные результаты будут широко применяться при построении доверительных интервалов и проверке статистических гипотез. Поскольку доказательство некоторых фактов требует глубокого знания линейной алгебры, в частности, теории квадратичных форм, часть утверждений следующей теоремы будет приведена без доказательства.

Теорема (о распределении выборочных характеристик нормальной совокупности).

Пусть генеральная совокупность имеет нормальное распределение с параметрами (), - выборка объема n из данной генеральной совокупности, - эмпирическое среднее, - эмпирическая дисперсия, . Тогда справедливы следующие утверждения:

1) и независимы,

2) имеет нормальное распределение с параметрами (),

3) имеет распределение -квадрат с n-1 степенью свободы (),

4) имеет распределение Стьюдента с n-1 степенью свободы ().

Доказательство.

1) Данное утверждение примем без доказательства.

2) Поскольку можно рассматривать как независимые случайные величины, имеющие то же распределение, что и генеральная совокупность , то выполняются соотношения . Поскольку каждая , имеет нормальное распределение, то их линейная комбинация также имеет нормальное распределение. Найдем параметры этого распределения. Имеем:

,

.

Следовательно, имеет нормальное распределение с параметрами и второе утверждение теоремы доказано.

3) Данное утверждение примем без доказательства.

4) Так как из второго утверждения теоремы имеет нормальное распределение с параметрами , то случайная величина имеет нормальное распределение с параметрами 0, 1. Действительно, нормальность данной случайной величины вытекает из нормальности . Далее имеем:

, .

Из третьего утверждения теоремы случайная величина имеет распределение . Тогда по определению 2 распределение Стьюдента случайная величина имеет распределение . Преобразуем данную случайную величину. Имеем: .

Таким образом, действительно случайная величина имеет распределение Стьюдента с n-1 степенью свободы.

Доказательство теоремы завершено.

 

Контрольные вопросы

1) Как определяются моменты случайной величины и от чего они зависят?

2) Как определяются эмпирические моменты и от чего они зависят?

3) В чем состоит основная идея метода моментов?

4) Чему равна оценка параметра распределения Пуассона, найденная по методу моментов? Совпадает ли она с оценкой этого же параметра, найденной по методу наибольшего правдоподобия?

5) Чему равна оценка параметра показательного распределения, найденная по методу моментов? Совпадает ли она с оценкой этого же параметра, найденной по методу наибольшего правдоподобия?

6) Каким свойством логарифма руководствуемся, переходя от функции правдоподобия к ее логарифму?

7) Всегда ли оценку наибольшего правдоподобия можно находить с помощью уравнения правдоподобия?

8) Всегда ли решение уравнения правдоподобия дает оценку наибольшего правдоподобия?

9) Каким условиям должны удовлетворять случайные величины для того, чтобы случайная величина имела распределение ?

10) Каким условиям должны удовлетворять случайные величины для того, чтобы случайная величина имела распределение ?

11) Каким условиям должны удовлетворять случайные величины и для того, чтобы случайная величина имеет распределение ?

12) Как формулируется теорема сложения для распределения ?

13) Если имеет распределение , то какое распределение имеет эмпирическое среднее ?

14) Если имеет распределение , то какая функция от имеет распределение

15) Если имеет распределение , то какая функция от имеет распределение ?

 







Дата добавления: 2014-11-12; просмотров: 797. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия