Студопедия — Основные определения. Внецентренное растяжение-сжатие – такой вид деформации, при котором стержень загружен растягивающими и (или) сжимающими силами
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные определения. Внецентренное растяжение-сжатие – такой вид деформации, при котором стержень загружен растягивающими и (или) сжимающими силами






Внецентренное растяжение-сжатие – такой вид деформации, при котором стержень загружен растягивающими и (или) сжимающими силами, приложенными вне центра тяжести поперечного сечения. При внецентренном растяжении-сжатии стержней (рис. 5.9) в стержне возникают три внутренних усилия: продольная сила () и два изгибающих момента ( и ). Предполагается, что стержень имеет большую жесткость, т. е. его длина не слишком велика по сравнению с размерами поперечного сечения. В этом случае определение усилий производим по недеформированному состоянию, т. е. при определении усилий не учитываем искривление оси стержня в результате изгиба. Используя правило знаков для изгибающих моментов, описанное во вступительной части разд. 5 " Сложное сопротивление", найдем внутренние усилия как сумму усилий от каждой силы. Тогда для стержня, показанного на рис. 5.9, согласно методу сечений получим

;

;

.

Здесь – эксцентриситеты точек приложения сил, т. е. расстояния от сил до осей и (всегда положительны); и – величины сил тоже считаются положительными. Знаки в формулах для и соответствуют правилу знаков для изгибающих моментов. Поясним их. Относительно оси сила вызывает изгиб стержня выпуклостью справа. Вся область сечения, расположенная справа от оси , в том числе и первый (положительный) квадрант, окажется растянутой, поэтому эта сила создает положительный изгибающий момент. Сила вызывает изгиб стержня относительно оси тоже выпуклостью справа, поэтому знак изгибающего момента от силы опять положительный. При изгибе относительно оси передняя и задняя части сечения имеют напряжения разного знака. Сила вызывает изгиб стержня выпуклостью за осью , т. е. задняя часть сечения (а значит, и первый квадрант) окажется растянутой, поэтому от силы имеет знак плюс. Сила вызывает сжатие задней части сечения стержня, первый квадрант окажется сжатым, и знак изгибающего момента от отрицательный[7].

  Рис. 5.9. Внецентренное растяжение- сжатие жесткого стержня  

От найденных усилий в стержне возникают только нормальные напряжения, которые определяются по формуле (5.1). Для проверки прочности стержня необходимо найти максимальные напряжения. Определение этих напряжений производится по схеме, описанной ранее, т. е.:

· строим нейтральную линию по уравнению (5.2);

· находим положение опасных точек;

· подставляя в (5.1) координаты опасных точек, вычисляем напряжения в этих точках;

· для проверки прочности сравниваем максимальные напряжения с допускаемыми.

Если в сечении действует только одна сила, растягивающая или сжимающая, то формулу (5.1) можно преобразовать к такому виду:

, (5.9)

где

, – (5.10)

радиусы инерции сечения относительно главных центральных осей; , – координаты точки приложения силы; , – координаты точки, в которой определяются напряжения. Все координаты вычисляются в главной центральной системе осей инерции сечения. Уравнение нейтральной линии в этом случае будет иметь вид

. (5.11)

Используя уравнение нейтральной линии (5.11), найдем отрезки , , отсекаемые нейтральной линией на осях координат (рис. 5.10),

; . (5.12)

Откладываем эти отрезки с учетом знаков вдоль главных центральных осей и строим нейтральную линию (см. рис. 5.10).

Рис. 5.10. Положение нейтральной линии при внецентренном растяжении (сжатии) одной силой    

Из формул (5.12) следуют некоторые закономерности, связывающие положение полюса (т. е. точки приложения силы) и нейтральной линии, которые удобно использовать для анализа решения задачи. Перечислим самые важные из этих закономерностей:

1) нейтральная линия всегда расположена в квадранте, противоположном тому, в котором находится полюс (см. рис. 5.10);

2) если полюс находится на одной из главных осей, то нейтральная линия перпендикулярна этой оси;

3) если полюс приближается к центру тяжести сечения, то нейтральная линия удаляется от него;

4) если полюс движется по прямой линии, то нейтральная линия поворачивается вокруг неподвижной точки.

Рис. 5.11. Вид эпюры напряжений: а – для полюса, расположенного на контуре ядра сечения; б – для полюса, находящегося внутри ядра сечения

Из предпоследней закономерности следует, что если сила приложена достаточно близко к центру тяжести, то нейтральная линия удаляется так далеко, что нигде не пересекает сечение. Это означает, что напряжения во всем сечении будут иметь один знак. Следовательно, существует такая область вокруг центра тяжести, которая обладает следующим свойством: если внутри этой области или на ее контуре приложить силу (растягивающую или сжимающую), то во всем сечении будут возникать напряжения одного знака. Такая область называется ядром сечения. Рис. 5.11 поясняет данное определение ядра сечения. Нейтральная линия касается сечения, если сила приложена на контуре ядра сечения (см. рис. 5.11, а), и нейтральная линия проходит за сечением, если полюс расположен внутри ядра сечения (см. рис. 5.11, б).

Из приведенного определения ядра сечения следует первый способ построения ядра сечения. Согласно этому способу надо обвести контур сечения нейтральными линиями, касающимися контура и нигде не пересекающими сечение. Полюсы, соответствующие этим нейтральным линиям, будут находиться на контуре ядра сечения. На практике обычно более удобным является второй способ построения ядра сечения, который основан на свойстве взаимности нейтральной линии и полюса [2, гл. 7, § 36]. Для построения ядра сечения по второму способу надо поместить полюсы во внешних всех угловых точках сечения, имеющего форму многоугольника, и построить соответствующие им нейтральные линии. Эти нейтральные линии очертят контур ядра сечения. Отметим, что при построении ядра сечения нельзя располагать полюсы во внутренних угловых точках, так как через них нельзя провести касательные, нигде не пересекающие сечение. Рис. 5.12 поясняет разницу между внешними и внутренними угловыми точками многоугольника.

Для определения напряжений и проверки прочности стержня произвольного сечения, а также для построения ядра сечения необходимо научиться находить геометрические характеристики сечений, важнейшими из которых являются моменты инерции. Этому посвящен п. 5.2.1 гл. 5.

 

 

Рис. 5.12. Точки 1–5 –внешние, 6, 7 – внутренние угловые точки

5.2.1. Определение моментов инерции сложных сечений относительно главных центральных осей (задачи № 29, 30, 31)

Рекомендуемая литература

Александров А. В., Потапов В. Д., Державин Б. П. Сопротивление материалов. М.: Высш. шк., 1995. Гл. 4.

Гастев В. А. Краткий курс сопротивления материалов. М.: Физматгиз, 1977. Гл. 15.

Дарков А. В., Шпиро Г. С. Сопротивление материалов. М.: Высш. шк., 1989. Гл. 5.

 







Дата добавления: 2014-11-12; просмотров: 880. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия