Студопедия — Классификация датчиков
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Классификация датчиков






По назначению различают датчики перемещения, усилий, угла поворота, частоты вращения и др.

По принципу действия датчики могут быть электрическими, механическими, акустическими, тепловыми, радиоактивными, радиоволновыми и др.

По способу преобразования неэлектрической величины в электрическую датчики подразделяются на следующие типы.

· активного сопротивления (потенциометрические, тензометрические, термосопротивления);

· индуктивные;

· емкостные;

· индукционные;

· фотоэлектрические;

· радиоволновые.

 

Датчики бывают контактными и бесконтактными. Чувствительный элемент в контактных датчиках непосредственно соприкасается с контролируемым веществом, а в бесконтактных датчиках не соприкасается (эти датчики создают вокруг себя поле, а контролируемая величина изменяет параметры этого поля).

В контактным датчикам относятся, например, потенциометрические, тензометрические, емкостные.

К бесконтактным относятся радиоактивные, ультразвуковые, фотоэлектрические, микроволновые и др. К преимуществам бесконтактных датчиков относятся высокая надежность и большой срок службы.

Величина (обычно неэлектрическая), воспринимаемая и контролируемая датчиком называется входной – индекс Х, а величина, преобразованная датчиком или выработанная им, - выходной – индекс У.

 

Датчики систем автоматического управления
строительными машинами и процессами

 

Потенциометрические датчики

Датчики служат для преобразования линейного или углового перемещения в электрический сигнал.

Они выполнены в виде переменного сопротивления, например реостата, подвижный контакт которого механически связан с преобразуемым элементом.

Характеристика потенциометрического датчика представляет собой зависимость изменения сопротивления выходного напряжения от непрерывного изменения регулируемого параметра (перемещения

Сопротивление зависит от величины перемещения движка который связан с исполнительным механизмом машины.

Потенциометрические датчики перемещения: а - схема включения; б - статическая характеристика

Тензометрические датчики (тензорезисторы)

Датчики предназначены для измерения статических или динамических деформаций в строительных конструкциях и узлах строительных машин и преобразования этих деформаций в изменение активного сопротивления. В основу работы тензодатчиков положено свойство материалов изменять свое электрическое сопротивление под действием силы, приложенной к ним.

Проволочные тензодатчики представляют собой отрезок проволоки диаметром 0,02...0,5 мм. При растяжении или сжатии конструкции происходит соответственно растяжение или сжатие проволоки датчика, что приводит к изменению длины / площади поперечного сечения S и удельного сопротивления ρ; проволоки. Если до растяжения электрическое сопротивление константановой или нихромовой проволоки было равно, то при растяжении оно стало R + ΔR. Относительное изменение сопротивления тензодатчика прямо пропорционально усилию приложенному к нему: ΔR/R = ƒ(Р).

Значение коэффициента чувствительности проволочного тензодатчика зависит от материала проволоки и находится в пределах 1,8...2,5. Сопротивление проволочного тензодатчика от 50 до 400 Ом. Номинальный (допустимый) рабочий ток составляет примерно 30 мА. Максимальная допустимая относительная деформация не превышает 0,3%. При измерениях тензодатчики включают, как правило, по мостовой схеме. Они имеют небольшие габариты и низкую стоимость.

 

Проволочные тензометрические преобразователи: а) - на сжатие; б) - на растяжение: 1 - корпус; 2 - проволока; 3 - выводные клеммы; в - статическая характеристика

Индуктивные датчики

Датчики основаны на изменении индуктивного сопротивления электромагнитного дросселя при перемещении одной из подвижных его деталей, обычно якоря. Они широко применяются для измерения малых угловых и линейных механических перемещений, деформаций, а также для управления следящими системами.

Индуктивный датчик представляет собой электромагнитный дроссель с переменным воздушным зазором δ, обмотка 1 которого включена последовательно с сопротивлением нагрузки ZH.

Индуктивные датчики: а - схема включения индуктивного датчика дроссельного типа; б - поворотно-трансформаторный датчик

Магнитопровод и якорь обычно выполнены из магнитомягкого материала. При изменении воздушного зазора δ (входная величина) меняется индуктивность обмотки дросселя Lдр, а также сопротивление обмотки Zдр.

При увеличении длины зазора δ; индуктивность обмотки дросселя уменьшается, а это, в свою очередь, приводит за счет уменьшения Zдр к увеличению тока в нагрузке.

К достоинствам нереверсивного индуктивного датчика следует отнести: высокую чувствительность, надежность и долговечность, отсутствие контактных устройств, значительную величину выходной мощности (до сотен вольт-ампер), простоту конструкции и удобство эксплуатации. Реверсивные датчики имеют чувствительность в 2 раза выше.

 

Емкостные датчики

В общем случае емкостный датчик представляет собой конденсатор, в котором емкостное сопротивление изменяется при изменении измеряемой (регулируемой) неэлектрической величины.

Емкостные датчики: а - схема емкостного дифференциального датчика; б - характеристика изменения емкости

Измеряемая (регулируемая) величина вызывает изменение расстояния d между пластинами. При перемещении подвижной пластины на расстояние ± Х значение d увеличивается, что приводит к уменьшению емкости датчика и к снижению реактивного и соответственно полного сопротивлений.

Основными достоинствами емкостных датчиков являются: высокая чувствительность, отсутствие подвижных трущихся деталей, простота конструкции, малые размеры, масса и инерционность.

 

Тахометрические датчики

К тахометрическим датчикам относятся тахогенераторы, которые представляют собой маломощные электрические машины, преобразующие механическое вращение в электрический сигнал. Тахогенераторы на выходе дают напряжение, пропорциональное частоте вращения, и применяются в качестве электрических датчиков угловой и линейной скорости (лента конвейера). В зависимости от вида выходного напряжения и конструкции они делятся на тахогенераторы постоянного и переменного тока.

Тахогенераторы постоянного тока конструктивно представляют собой электрические генераторы постоянного тока и выполнены с возбуждением от постоянных магнитов. При вращении якоря тахогенератора с частотой n с его щеток снимается ЭДС, значение которой выражается в В:

С увеличением частоты вращения тахогенератора до определенного момента его выходное напряжение Uвых растет пропорционально и только при большой частоте линейность характеристики нарушается.

Тахогенераторы постоянного тока: а - схема тахогенератора с возбуждением от постоянных магнитов; б - схема тахогенератора с независимым электромагнитным возбуждением; в - выходная характеристика

 

Микро ЭВМ и микропроцессоры
в автоматизированных системах управления

 

Внедрение в практику автоматизации строительных машин и строительных процессов микропроцессорной техники позволило значительно повысить общий технический уровень строительного производства.

Учитывая необычайно широкие возможности современной микровычислительной техники для автоматизации машин, в частности наличие компактных запоминающих устройств, обладающих большой емкостью и позволяющих хранить в них довольно сложные программы управления, можно создать с помощью микропроцессорной техники машины с очень высоким уровнем автоматизации.

Микропроцессорная техника придает системам автоматического управления новую технологическую, функциональную, эксплуатационную гибкость и универсальность, простоту программирования и перепрограммирования при изменении состава технологического оборудования и самого процесса, сравнительную дешевизну и надежность работы систем управления. Новые средства автоматизации технологических процессов в строительстве имеют ряд преимуществ но сравнению с традиционными, как в части их построения, так и функциональных возможностей:

· простота перестройки системы с пульта управления за счет изменения программы при замене технологического оборудования и изменении условий производства (схемные решения заменяются программными);

· возможность диагностики работы строительных машин и оборудования и тестирования отдельных элементов самих систем управления;

· широкая информация о технологическом процессе, контроле и учете горючесмазочных материалов;

· оптимизация технологических процессов в целях уменьшения расхода сырья, топлива, энергии, снижения брака и др.;

· формирование и регистрация объективной технико-экономической информации (учет производительности, простоев, брака, расхода топлива и др.);

· высокая надежность и резкое сокращение нестандартного оборудования;

· возможность постепенного вытеснения разнотипных традиционных средств локальной автоматики.

 

 

ЛИТЕРАТУРА

 

1. Добронравов, С.С. Строительные машины и основы автоматизации: учеб. для строит. вузов/ С.С. Добронравов, В.Г. Дронов. – М.: Высш. шк., 2001. – 575с.: ил.

2. Волков, Д.П. Строительные машины: учеб. Изд. 2-е, перераб. и доп./ Д.П. Волков, В.Я. Крикун. – М.: Изд-во ассоциации строительных вузов, 2002. – 376 с.: ил.







Дата добавления: 2015-10-19; просмотров: 734. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия