Студопедия Главная Случайная страница Задать вопрос

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тема 7. Индексы





При изучении содержания темы студент должен составить представление об индексе как показателе сравнения двух величин; элементах, входящих в построение индексов; различиях индексов индивидуальных и агрегатных, индексов объемных и качественных показателей.

Основное внимание должно быть уделено агрегатным индексам – показателям сравнения характеристик сложных явлений, состоящих из непосредственно не суммируемых элементов.

Надо усвоить методику построения агрегатных индексов физи­ческого объема продукции. Следует иметь в виду, что основной проблемой при построении этих индексов является проблема выбора показателей-соизмерителей, обеспечивающих сопоставимость числителя и знаменателя индекса.

Индексируемые показатели, а также явления, выступающие в роли соизмерителей, могут быть качественными и количественными (объемными). Количественные показатели представляют собой численность тех или иных еди­ниц или общий объем какого-либо признака. Качественные характеризу­ют уровень явления в расчете на ту или иную единицу совокупности.

При построении агрегатных индексов качественных показателей в роли соизмерителей выступают количественные показатели и фиксируются на уровне отчетного периода. При построении агрегатных индексов количественных показателей в роли соизмерителей выступают качественные показатели и фиксируются на уровне базисного периода.

Индивидуальные индексы не требуют соизмерителей, т.к. при их расчете сравниваются абсолютно однородные явления:

, , , и т.п., (7.1)

где q – количество единиц продукции одного вида (шт., т, л, ...);

p – цена единицы определенного вида продукции (руб.);

z – себестоимость единицы определенного вида продукции (руб.);

w – производительность труда одного человека (шт., т, л, ...).

Средние индексы (арифметический, гармонический) студент изучает в связи с агрегатными. Агрегатные индексы качественных показателей применяются в двух формах: в форме индексов перемен­ного состава и в форме индексов фиксированного состава.

Индекс среднего уровня может быть представлен как произведение аналитических индексов-сомножителей, каждый из которых отражает изменение только одного фактора, и тем самым – влияние этого изменения на динамику среднего уровня. Первый индекс носит название индекса фиксированного состава, второй – индекса структурных сдвигов.

(7.2)

Например, для анализа динамики среднемесячной производительности труда (w) по группе работников индекс переменного состава определяется по формуле:

,

(7.3)

где , – стоимость произведенной продукции в отчетном и базисном периодах в сопоставимых ценах;

, – численность работников в отчетном и базисном периодах. Индекс фиксированного состава:

, (7.4)

где – индивидуальные индексы производительности труда.

Индексы, приведенные в формуле (7.4), являются индексами фиксированного состава, т.к. в каждом из них индексируется только одна величина; напротив, индексы, приведенные в формуле (7.3), характеризуют изменение и качественных величин (w), и структуры количественных (T) .

Эта структура может быть выражена в виде относительных величин:

(7.5)

В дальнейшем, для отражения отличия структуры показателя Т (либо других количественных показателей) в разных условиях, будет применяться обозначение . В других индексах могут использоваться показатели , и т.д.

Индексные методы широко применяются для анализа факторов изменения сложных показателей, полученных на основе соизмерения абсолютных величин. В связи с этим необходимо изучить вопрос о способах построения взаимосвязанных индексов и способах расчета абсолютного изменения сложной величины за счет влияющих факторов.

Индекс результативного показателя связан с индексами показателей-факторов так же, как абсолютные величины этих показателей:

, (7.6)

где – индекс стоимости продукции;

– индекс физического объема продукции в базисных ценах;

– индекс цен.

Такая взаимосвязь может быть использована не только для выявления относительного изменения уровня изучаемого явления за счет отдельных факторов, но и для определения размера абсолютного изменения уровня сложного явления в связи с влиянием исследуемых факторов:

. (7.6а)

Среди наиболее часто используемых в экономических расчетах индексов необходимо отметить:

индексы объема

, ; (7.7)

индексы цен

, ; (7.8)

индексы себестоимости

, . (7.9)

Индексы производительности труда могут иметь три формы:

натуральные

, ; (7.10)

стоимостные

, ,

; (7.11)

трудовые

, ,

, (7.12)

где t – трудоемкость изготовления единицы продукции.

Индексы заработной платы также имеют две формы (индивидуальный индекс и сводный индекс), т.к. заработная плата – это сумма, начисленная в счет оплаты за работу одного человека, т.е. показатель качественный:

, ,

, (7.13)

где Ф – фонд заработной платы всех работников на исследуемом объекте,

f – заработная плата одного работника.

В выше приведенных формулах использованы условные обозначения любого учебника «Общей теории статистики».

Завершая изучение темы, следует обратить внимание на наличие взаимосвязей между следующими группами индексов:

- индивидуальными и сводными;

- индексами базисными и цепными;

- индексами переменного и фиксированного состава;

- индексами взаимосвязанных явлений.






Дата добавления: 2015-06-15; просмотров: 146. Нарушение авторских прав

Studopedia.info - Студопедия - 2014-2017 год . (0.123 сек.) русская версия | украинская версия