Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Общая задача линейного программирования





Мы рассмотрели сейчас предельно упрощенные примеры, преследуя исключительно иллюстративные цели, однако их анализ позволит осмыслить общие идеи и математические методы, лежащие в основе решения подобных задач.

В обоих примерах множество допустимых планов определяется точками выпуклого многогранника, полученного в результате пересечения полупространств, заданных линейными неравенствами (2.2.1) и (2.2.2). Линейная целевая функция при двух переменных задает на плоскости семейство параллельных прямых, при трех переменных – семейство параллельных плоскостей в трехмерном пространстве, а в случае n переменных – семейство параллельных (n- 1)–мерных пространств (гиперплоскостей) в n -мерном пространстве.

Линейные ограничения и линейная целевая функция появились в наших примерах благодаря предположению о пропорциональной зависимости переменных и постоянных факторов.

В силу этого подобный класс задач называют задачами линейного программирования.

Геометрически решение задачи линейного программирования сводится к следующим этапам:

а) определение области допустимых планов, т.е. построение соответствующего ограничениям многогранника;

б) перемещение гиперплоскости целевой функции в пространстве параллельно самой себе до тех пор, пока она не будет максимально (минимально) удалена от начала координат и при этом будет иметь хотя бы одну общую точку с многогранником допустимых планов.

Этой точкой, как мы видели, будет вершина многогранника, хотя может быть грань или ребро в случае параллельности гиперплоскости целевой функции какой-либо грани или ребру многогранника.

Координаты этой вершины и будут определять оптимальное решение. Если целевая гиперплоскость касается грани или ребра, то в этом случае получается множество оптимальных планов, имеющих одно и тоже максимальное (либо минимальное) значение целевой функции.

Из анализа решения примеров делаем важный вывод:

оптимальному плану соответствует точка в области допустимых планов (возможно неединственная), являющаяся вершиной многогранника допустимых планов. На этом основана идея метода решения задачи линейного программирования, заключающаяся в том, что для нахождения оптимального плана достаточно просматривать лишь вершины многогранника допустимых планов.

Решение (план), которому соответствует вершина многогранника, называется базисным. Для нахождения базисного плана необходимо решить систему из n линейных уравнений с n неизвестными.

Разработанный в 1949г. Дж. Данцигом симплекс-метод основан на последовательном переходе от одной вершины многогранника допустимых планов к соседней, в которой линейная целевая функция принимает лучшее (не худшее) значение до тех пор, пока не будет найдено оптимальное решение.

Рассмотренные выше примеры позволяют сформулировать общую задачу линейного программирования.

Дана система m линейных неравенств с n переменными

a 11 х 1 + a 12 х 2 + …+ a1n хn £ b 1

a 21 х 1 + a 22 х 2 + …+ a2n хn £ b 2

……………………………….. (2.2.3)

am 1 х 1 + a m2 х 2 + …+ amn хn £ b m

и линейная функция

F = c 1 х 1 + c 2 х 2 + … + cnхn. (2.2.4)

Необходимо найти такое решение системы Х = (х 1, х 2,…, хn), где

х j ³ 0 (j =1,2,…n), (2.2.5)

при котором линейная функция F (2.2.4) принимает оптимальное (максимальное или минимальное) значение.

Система (2.2.3) называется системой ограничений, а функция F – целевой функцией, критерием или функцией цели.

Более кратко общую задачу линейного программирования можно представить в виде:

F = à max(min)

при ограничениях:

£ bi (i =1,2,…, m),

xj ³ 0 (j =1,2,… n).

Оптимальным решением (или оптимальным планом) задачи линейного программирования называется решение системы ограничений (2.2.3), удовлетворяющее условию (2.2.5), при котором линейная функция (2.2.4) принимает оптимальное (максимальное или минимальное) значение.

В рассматриваемой задаче все неравенства вида “ £ “, хотя могут быть и вида “³“, каждое такое неравенство, как мы видели на примерах, определяет полупространство в n -мерном пространстве. Постоянные коэффициенты aij являются, как правило, нормами расхода i-го ресурса на производство единицы j- го изделия (продукта). Коэффициенты bi задают предельные объемы использования i -го ресурса. Коэффициенты cj определяют удельную прибыль (или затраты) от производства единицы j -го изделия (продукта).

Если мы какую-либо производственную задачу смоделировали в виде задачи линейного программирования, то в ходе ее решения можно получить следующие результаты:

1.Ограничения могут оказаться несовместными, и задача не имеет решения.

2. Целевая функция не ограничена в области допустимых планов, ее максимум (или минимум) ® + ¥ (- ¥).

3. Оптимальное решение единственное (целевая функция касается области допустимых планов в единственной вершине, ее координаты и определяют оптимальный план).

4. Существует некоторое множество оптимальных решений (планов).

Если задача экономически поставлена правильно, то 1-й и 2-ой случаи исключаются.







Дата добавления: 2015-04-16; просмотров: 579. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия