Студопедия — A. Air Pollution
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

A. Air Pollution






Urban air pollution is commonly known as smog. The dark London smog is generally a smoky mixture of carbon monoxide and organic compounds from incomplete combustion (burning) of fossil fuels such as coal, and sulfur dioxide from impurities in the fuels. As the smog ages and reacts with oxygen, organic and sulfuric acids condense as droplets, increasing the haze. Smog developed into a major health hazard by the 20th century. Londoners died of its effects.

A second type of smog, photochemical smog, began reducing air quality over large cities like Los Angeles in the 1930s. This smog is caused by combustion in car, truck, and airplane engines, which produce nitrogen oxides and release hydrocarbons from unburned fuels. Sunlight causes the nitrogen oxides and hydrocarbons to combine and turn oxygen into ozone, a chemical agent that attacks rubber, injures plants, and irritates lungs. The hydrocarbons are oxidized into materials that condense and form a visible, pungent haze.

Eventually most pollutants are washed out of the air by rain, snow, fog, or mist, but only after traveling large distances, sometimes across continents. As pollutants build up in the atmosphere, sulfur and nitrogen oxides are converted into acids that mix with rain. This acid rain falls in lakes and on forests, where it can lead to the death of fish and plants, and damage entire ecosystems. Eventually the contaminated lakes and forests may become lifeless. Regions that are downwind of heavily industrialized areas, such as Europe and the eastern United States and Canada, are the hardest hit by acid rain. Acid rain can also affect human health and man-made objects; it is slowly dissolving historic stone statues and building facades in London, Athens, and Rome.

One of the greatest challenges caused by air pollution is global warming, an increase in the earth’s temperature due to the buildup of atmospheric gases such as carbon dioxide. With the heavy use of fossil fuels in the 20th century, atmospheric concentrations of carbon dioxide have risen dramatically. Carbon dioxide and other gases, known as greenhouse gases, reduce the escape of heat from the planet without blocking radiation coming from the sun. Because of this greenhouse effect, average global temperatures are expected to rise 1° to 3.5° C (1.8° to 6.3° F) by the year 2100. Although this trend appears to be a small change, the increase would make the earth warmer than it has been in the last 125,000 years, possibly changing climate patterns, affecting crop production, disrupting wildlife distributions, and raising the sea level.

Air pollution can also damage the upper atmospheric region known as the stratosphere. Excessive production of chlorine-containing compounds such as chlorofluorocarbons (CFCs) (compounds used in refrigerators, air conditioners, and in the manufacture of polystyrene products) has depleted the stratospheric ozone layer, creating a hole above Antarctica that lasts for several weeks each year. As a result, exposure to the sun’s harmful rays has damaged aquatic and terrestrial wildlife and threatens human health in high-latitude regions of the northern and southern hemispheres.

B. Water Pollution
The demand for freshwater rises continuously as the world’s population grows. From 1940 to 2000, withdrawals of fresh water from rivers, lakes, reservoirs, and other sources has increased fourfold.

Sewage, industrial wastes, and agricultural chemicals such as fertilizers and pesticides are the main causes of water pollution. Water runoff, a nonpoint source of pollution, carries fertilizing chemicals such as phosphates and nitrates from agricultural fields and yards into lakes, streams, and rivers. These combine with the phosphates and nitrates from sewage to speed the growth of algae, a type of aquatic plant. The water body may then become choked with decaying algae, which severely depletes the oxygen supply. This process, called eutrophication, can cause the death of fish and other aquatic life. Agricultural runoff may be to blame for the growth of a toxic form of algae called Pfiesteria piscicida, which was responsible for killing large amounts of fish in bodies of water from the Delaware Bay to the Gulf of Mexico in the late 1990s. Runoff also carries toxic pesticides and urban and industrial wastes into lakes and streams.

Erosion, the wearing away of topsoil by wind and rain, also contributes to water pollution. Soil and silt (a fine sediment) washed from logged hillsides, plowed fields, or construction sites, can clog waterways and kill aquatic vegetation. Even small amounts of silt can eliminate desirable fish species. For example, when logging removes the protective plant cover from hillsides, rain may wash soil and silt into streams, covering the gravel beds that trout or salmon use for spawning.

C. Soil Pollution
Soil is a mixture of mineral, plant, and animal materials that forms during a long process that may take thousands of years. It is necessary for most plant growth and is essential for all agricultural production. Soil pollution is a buildup of toxic chemical compounds, salts, pathogens (disease-causing organisms), or radioactive materials that can affect plant and animal life.

Unhealthy soil management methods have seriously degraded soil quality, caused soil pollution, and enhanced erosion. Treating the soil with chemical fertilizers, pesticides, and fungicides interferes with the natural processes occurring within the soil and destroys useful organisms such as bacteria, fungi, and other microorganisms. For instance, strawberry farmers in California fumigate the soil with methyl bromide to destroy organisms that may harm young strawberry plants. This process indiscriminately kills even beneficial microorganisms and leaves the soil sterile and dependent upon fertilizer to support plant growth. This results in heavy fertilizer use and increases polluted runoff into lakes and streams.

Improper irrigation practices in areas with poorly drained soil may result in salt deposits that inhibit plant growth and may lead to crop failure. In 2000 BC, the ancient Sumerian cities of the southern Tigris-Euphrates Valley in Mesopotamia depended on thriving agriculture. By 1500 BC, these cities had collapsed largely because of crop failure due to high soil salinity. The same soil pollution problem exists today in the Indus Valley in Pakistan, the Nile Valley in Egypt, and the Imperial Valley in California.

D. Solid Waste
Solid wastes are unwanted solid materials such as garbage, paper, plastics and other synthetic materials, metals, and wood. Billions of tons of solid waste are thrown out annually. The United States alone produces about 200 million metric tons of municipal solid waste each year (see Solid Waste Disposal). A typical American generates an average of four pounds of solid waste each day. Cities in economically developed countries produce far more solid waste per capita than those in developing countries. For instance, Washington D.C. produces five times the solid waste, per person, of Quito, Ecuador. Moreover, waste from developed countries typically contains a high percentage of synthetic materials that take longer to decompose than the primarily biodegradable waste materials of developing countries.

Areas where wastes are buried, called landfills, are the cheapest and most common disposal method for solid wastes worldwide. But landfills quickly become overfilled and may contaminate air, soil, and water. Incineration, or burning, of waste reduces the volume of solid waste, but produces dense ashen wastes (some of which become airborne) that often contain dangerous concentrations of hazardous materials such as heavy metals and toxic compounds. Composting, using natural biological processes to speed the decomposition of organic wastes, is an effective strategy for dealing with organic garbage and produces a material that can be used as a natural fertilizer. Recycling, extracting and reusing certain waste materials, has become an important part of municipal solid waste strategies in developed countries. According to the EPA, over one-fifth of the municipal solid waste produced in the United States is now recycled or composted. Recycling also plays a significant, informal role in solid waste management for many Asian countries, such as India, where organized waste-pickers comb streets and dumps for items such as plastics, which they use or resell.

Expanding recycling programs worldwide can help reduce solid waste pollution, but the key to solving severe solid waste problems lies in reducing the amount of waste generated. Waste prevention, or source reduction, such as altering the way products are designed or manufactured to make them easier to reuse, reduces the high costs associated with environmental pollution.

E. Hazardous Waste
Hazardous wastes are solid, liquid, or gas wastes that may be deadly or harmful to people or the environment and tend to be persistent or nondegradable in nature. Such wastes include toxic chemicals and flammable or radioactive substances, including industrial wastes from chemical plants or nuclear reactors, agricultural wastes such as pesticides and fertilizers, medical wastes, and household hazardous wastes such as toxic paints and solvents.

About 400 million metric tons of hazardous wastes are generated each year. The United States alone produces 240 million metric tons—70 percent from the chemical industry. The use, storage, transportation, and disposal of these substances pose serious environmental and health risks. Even brief exposure to some of these materials can cause cancer, birth defects, nervous system disorders, and death. Large-scale releases of hazardous materials may cause thousands of deaths and contaminate air, water, and soil for many years. The world’s worst nuclear reactor accident took place near Chernobyl’, Ukraine, in 1986 (see Chernobyl’ Accident). The accident killed at least 31 people, forced the evacuation of over 100,000 more, and sent a plume of radioactive material into the atmosphere that contaminated areas as far away as Norway and the United Kingdom.

Until the Minamata Bay contamination was discovered in Japan in the 1960s and 70s, most hazardous wastes were legally dumped in solid waste landfills, buried, or dumped into lakes, rivers, and oceans. Legal regulations now restrict how such materials may be used or disposed, but such laws are difficult to enforce and often contested by industry. It is not uncommon for industrial firms in developed countries to pay poorer countries to accept shipments of solid and hazardous wastes, a practice that has become known as the waste trade. Moreover, cleaning up the careless dumping of the mid-20th century is costing billions of dollars and progressing very slowly, if at all. The United States has an estimated 10,000 abandoned hazardous waste dumps that need immediate action. Cleaning them up could take 50 years and cost $100 billion.

Hazardous wastes of particular concern are the radioactive wastes from the nuclear power and weapons industries. To date there is no safe method for permanent disposal of old fuel elements from nuclear reactors. Most are kept in storage facilities at the original reactor sites where they were generated. With the end of the Cold War, nuclear warheads that are decommissioned, or no longer in use, also pose storage and disposal problems.

F. Noise Pollution
Unwanted sound, or noise, such as that produced by airplanes, traffic, or industrial machinery, is considered a form of pollution. Noise pollution is at its worst in densely populated areas. It can cause hearing loss, stress, high blood pressure, sleep loss, distraction, and lost productivity.

Sounds are produced by objects that vibrate at a rate that the ear can detect. This rate is called frequency and is measured in hertz, or vibrations per second. Most humans can hear sounds between 20 and 20,000 hertz, while dogs can hear high-pitched sounds up to 50,000 hertz. While high-frequency sounds tend to be more hazardous and more annoying to hearing than low-frequency sounds, most noise pollution damage is related to the intensity of the sound, or the amount of energy it has. Measured in decibels, noise intensity can range from zero, the quietest sound the human ear can detect, to over 160 decibels. Conversation takes place at around 40 decibels, a subway train is about 80 decibels, and a rock concert is from 80 to 100 decibels. The intensity of a nearby jet taking off is about 110 decibels. The threshold for pain, tissue damage, and potential hearing loss in humans is 120 decibels. Long-lasting, high-intensity sounds are the most damaging to hearing and produce the most stress in humans.

Solutions to noise pollution include adding insulation and sound-proofing to doors, walls, and ceilings; using ear protection, particularly in industrial working areas; planting vegetation to absorb and screen out noise pollution; and zoning urban areas to maintain a separation between residential areas and zones of excessive noise.

 

Task No 2. Read and translate the following text







Дата добавления: 2015-03-11; просмотров: 587. Нарушение авторских прав; Мы поможем в написании вашей работы!



Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия