Студопедия — ТОКОВЕДУЩАЯ ЦЕПЬ И ДУГОГАСИТЕЛЬНАЯ СИСТЕМА АВТОМАТОВ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ТОКОВЕДУЩАЯ ЦЕПЬ И ДУГОГАСИТЕЛЬНАЯ СИСТЕМА АВТОМАТОВ






а) Токоведущая цепь. Наиболее важной частью токоведущей цепи автоматов являются контакты. При номинальных токах до 200 А применяется одна пара контактов, которые для увеличения дугостойкости могут быть облицованы металлокерамикой. При токах более 200 А применяются двухступенчатые контакты типа перекатывающегося контакта (рис. 3.15) или пары главных и дугогасительных контактов. Основные контакты облицовываются серебром либо металлокерамикой (серебро, никель, графит). Дугогаентельный неподвижный контакт покрывается металлокерамикой СВ-50 (серебро, вольфрам), подвижный — СН-29ГЗ. Применяется металлокерамика и других марок. Работа таких контактов рассмотрена в § 3.4. В автоматах на большие номинальные токи применяется несколько параллельных пар глазных контактов.

В быстродействующих автоматах с целью уменьшения собственного времени применяются исключительно торцевые контакты, имеющие малый провал. Контакты изготавливаются из меди, а поверхности касания подвергаются серебрению. В настоящее время проводятся работы по созданию искусственного жидкостного охлаждения контактов [3.2]. Такое решение позволяет сохранить малую массу и быстродействие автомата и увеличить длительный ток с 2,5 до 10 кА.

Устойчивость контактирования при включении на короткое замыкание зависит от скорости нарастания контактного нажатия. При амплитуде включаемого тока более 30—40 кА применяются автоматы моментного действия, у которых скорость движения контактов и контактное нажатие не зависят от скорости перемещения включающего механизма.

В универсальных автоматах, работающих селективно, создается определенная выдержка времени при протекании тока короткого замыкания, и размыкание контактов в течение этого времени недопустимо.

Во избежание приваривания контактов применяется электродинамическая компенсация. Один из вариантов такого компенсатора показан на рис. 17.1. При протекании тока в дугогасительной контуре на проводник АВ, несущий неподвижный дугогасительный контакт, действует электродинамическое усилие Рэд, увеличивающее нажатие контактов.

В установочных и быстродействующих автоматах, у которых при коротком замыкании отключение происходит без выдержки времени, электродинамическая компенсация не применяется, так как она ведет к увеличению собственного времени отключения.

б) Дугогасительная система. В автоматах применяются полузакрытое и открытое исполнения дугогасительных устройств. В полузакрытом исполнении автомат закрыт изоляционным кожухом, имеющим отверстия для выхода горячих газов. Объем кожуха достаточно велик для исключения внутри больших избыточных давлений. Зона выброса горячих и ионизированных газов составляет несколько сантиметров от выхлопных щелей. Такое исполнение применяется в установочных и универсальных автоматах, монтируемых рядом с другими аппаратами, в распределительных устройствах, автоматах с ручным управлением. Предельный отключаемый ток не превышает 50 кА.

В быстродействующих автоматах и автоматах на большие предельные токи (100 кА и выше) или большие напряжения (выше 1000 В) применяются дугогасительные устройства открытого исполнения с большой зоной выброса.

В установочных и универсальных автоматах массового применения широко используется деионная дугогасительная решетка из стальных пластин (§ 4.11). Поскольку эти автоматы предназначены как для переменного, так и для постоянного тока, число пластин выбирается из условия отключения цепи постоянного тока. На каждую пару пластин должно приходиться напряжение не более 25 В. В цепях переменного тока с напряжением 660 В такие дугогасительные устройства обеспечивают гашение дуги с током до 50 кА. На постоянном токе эти устройства работают при напряжении до 440 В и отключаемых токах до 55 кА. При этом дуга горит с минимальным выбросом ионизированных и нагретых газов из дугогасительного устройства.

При больших токах применяются лабиринтно-щелевые камеры и камеры с прямой продольной щелью. Втягивание дуги в щель осуществляется магнитным дутьем с катушкой тока. Продольно-щелевая камера может иметь несколько параллельных щелей неизменного сечения. Это уменьшает аэродинамическое сопротивление камеры и облегчает вхождение в нее дуги с большим током. Вначале дуга разбивается по щелям на ряд параллельных дуг. Но затем из всех параллельных дуг остается лишь одна. Гашение этой дуги завершает процесс отключения. Стенки камеры и перегородки изготавливаются из асбоцемента или керамики.

В лабиринтно-щелевой камере (см. рис. 4.24) постепенное вхождение дуги в зигзагообразную щель не создает высокого аэродинамического сопротивления при больших токах. Узкая щель повышает градиент напряжения в дуге, что сокращает необходимую ее длину при гашении. Зигзагообразная форма щели уменьшает габаритные размеры автомата. В такой камере дуга интенсивно охлаждается стенками. Поэтому материал камеры должен обладать высокими теплопроводностью и температурой плавления.

Для того чтобы камера не разрушалась под воздействием температуры, дуга должна двигаться непрерывно с большой скоростью. Это требует создания мощного магнитного поля на всем пути движения дуги в щели. При недостаточно высокой скорости движения дуги происходит разрушение дугогасительного устройства (§ 18.7). В качестве материала для камеры применяется керамика — кордиерит. Газообразующие материалы типа фибры и органического стекла не применяются из-за повышения аэродинамического сопротивления вхождению дуги в камеру.

В настоящее время с целью упрощения конструкции (отказ от мощных и сложных систем магнитного дутья) вновь возвращаются к использованию деионной стальной решетки. Стальные, изолированные керамикой пластины, имеющие паз для дугогасительных контактов, создают усилие, перемещающее дугу. Гашение дуги происходит так же, как в камере с поперечными изоляционными перегородками, но при отсутствии специальной системы магнитного дутья.

 

. 5. ТИРИСТОРНЫЙ ПУСКАТЕЛЬ

На рис. 8 14 показан один из вариантов схемы бесконтактного — тиристорного пускателя. Силовой блок Б1 содержит силовые тиристоры VS1—VS3 и диоды VD1—VD3, рассчитанные на номинальный и пусковой токи двигателя М. При подаче сигнала управления на электроды 1—2, 3—4, 5—6 тиристоры открываются и двигатель подключается к сети В отрицательный полупериод, когда тиристоры закрываются отрицательным анодным напряжением, ток двигателя проходит по диодам VD1—VD3. Диоды могут быть заменены тиристорами.

При снятии сигнала управления (при перегрузке, потере фазы, нажатии кнопки «Стоп») тиристоры закрываются. Следующий полупериод тока пропускается диодами. После этого диоды VD1, VD2, VD3 закрываются и двигатель отключается от сети. По тиристорам и диодам протекает лишь небольшой ток утечки

Сигналы управления тиристорами формируются в блокинг-генера-торе Б2, который получает напряжение от блока питания БЗ. При нажатии кнопки «Пуск» включается тиристор VS5 и все напряжение прикладывается к резистору R3. При этом транзистор VT3 закрыт, так кал напряжение на резисторе R3 больше, чем на резисторе R4. По мере заряда конденсатора С2 наступают условия для открытия транзистора VT3 и конденсатор С2 начинает разряжаться на обмотку wx трансформатора Т2. Электродвижущая сила, наводящаяся при этом способствует быстрому и полному открытию транзистора VT3 При разряде конденсатора напряжение на резисторе R3 возрастает, транзистор VT3 закрывается и снова начинается заряд конденсатора С2. Таким образом, генерируются импульсы тока в обмотке»i я в трех выходных обмотках ©2 появляются управляющие импульсы Диоды VD5—VD7 пропускают импульсы только положительной полярности.

Длительность импульса 30 мкс при паузе между импульсами 300 мкс (частота около 3 кГц).

Аналогичные схемы могут управляться сигналами постоянного тока или переменным током низкой частоты Использование блокинг-генератора даст возможность быстро включать тиристор и уменьшить нагрузку по его управляющему электроду

При нормальном режиме транзистор VT2 блока Б2 насыщен и лампа Л2 не горит. Если на контакты 7, 8 блока Б2 подано напряжение с одноименных контактов блока защиты Б4, тиристор VS4 открывается и блокинг-генератор лишается питания. Блок питания БЗ включается только на резистор R8. При потере питания генерация в блоке Б2 прекращается и тиристор VSS отключается. Одновременно транзистор VT2 закрывается и загорается лампа Л2, сигнализируя об отключении пускателя от защиты. В случае потери фазы в выходном напряжении (после диодов VD8—VD10) появляется пауза В эту паузу блок Б2 останавливается и тиристор VS5 отключается, что ведет к закрытию силовых тиристоров.

Блок Б4 защиты двигателя и силовых тиристоров от перегрузки питается от трансформаторов тока ТА1—ТАЗ. Напряжение с нагрузочных резисторов выпрямляется и подается на потенциометр R1. Параметры трансформаторов ТА1—ТАЗ и резисторов Rl, R5—R7 выбираются так, что при номинальном токе во всех трех фазах напряжение, снимаемое с потенциометра R1, меньше напряжения пробоя стабилитрона VD11. До тех пор пока напряжение на стабилитроне меньше напряжения пробоя (с7<ипроб), сопротивление стабилитрона очень высоко. При этом ток базы транзистора VT1 недостаточен для его открытия. Если ток хотя бы в одной фазе превысит номинальное значение, то возникает неравенство U>Unvoe, сопротивление стабилитрона резко падает, ток в базе VT1 возрастает и он насыщается. Ток в стабилитроне ограничивается резистором R2 до допустимого значения. Если восстановится неравенство U<Unpoe, то сопротивление стабилитрона снова возрастет, транзистор VT1 закроется. После открытия транзистора VT1 начинается заряд конденсатора С1. Напряжение с конденсатора С1 на выход 7, 8 не подается до тех пор, пока не превысит напряжение переключения динистора VD4. Динистор имеет такую же вольт-амперную характеристику, как и тиристор при /у=0. Если перегрузка была настолько кратковременной, что конденсатор С2 не успел зарядиться, то напряжение на выходе 7, 8 не появится и пускатель останется в работе. Если Uc\ станет больше напряжения переключения динистора VD4, произойдет разряд конденсатора С1 на цепь управления тиристора VS4 блока Б2 и последний откроется. При этом прекратится генерация импульсов, открывающих VS1—VS3, и двигатель остановится. Параметр срабатывания блока защиты регулируется потенциометром R1. За счет усложнения блока защиты можно создать выдержку времени в зависимости от условия перегрузки. Защита двигателя и силовых тиристоров от токов КЗ в данном пускателе осуществляется быстродействующими предохранителями FU1—FU3 типа ПНБ-5 (§ 16.4).

По сравнению с контактными тиристорный пускатель обладает следующими преимуществами:

1. Отсутствие электрической дуги при коммутациях делает аппарат незаменимым при работе во взрывоопасных и пожароопасных средах.

2. Высокая электрическая износостойкость (15-106 циклов).

3. Совершенная защита от токов перегрузки и КЗ, а также при потере фазы, что обеспечивает увеличение срока службы двигателей.

4. Допустимое число включений достигает 2000 в час.

5. Длительность отключения не превышает 0,02 с.

6. Высокая надежность и долговечность, а также отсутствие необходимости в уходе при эксплуатации.

Недостатками тиристорного пускателя являются сложность схемы, большие габариты и высокая стоимость. Несмотря на эти недостатки, бесконтактные пускатели находят широкое применение во взрыво- и пожароопасных производствах и других областях техники, требующих высокой надежности.

 







Дата добавления: 2015-04-16; просмотров: 1024. Нарушение авторских прав; Мы поможем в написании вашей работы!



Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия