Студопедия — Неорганические материалы. Керамика. Стекло
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Неорганические материалы. Керамика. Стекло






СТЕКЛО

Понятие и свойства неорганического стекла

Неорганическое стекло - особого вида затвердевший аморфный раствор - сложный расплав высокой вязкости кислотных и основных оксидов. В его состав входят стеклообразующие оксиды (стекломассы) Si, B, P, Ge, As, образующие структурную сетку и модифицированные оксиды Na, K, Li, Ca, Mg, Ba, изменяющие физико-химические свойства стекломассы. Для сообщения стеклу нужных технических характеристик в состав стекла вводят оксиды Al, Fe, Pb, Ti, Be и другие.

Механические свойства стёкол характеризуются высоким сопротивлением сжатию (500-2000 Мпа), но низким σв при растяжении (30-90 МПа) и изгибе. Е невысокое (45-100 МПа). Твёрдость стекла равна 5-7 единиц (10 единиц у алмаза).

Важнейшие специфические свойства стёкол - их оптические свойства: прозрачность, отражение, рассеяние, поглощение и преломление света. Обычное неокрашенное стекло пропускает до 90%, отражает ~ 8% и поглощает ~ 1% видимого и частично инфрасвета; ультрафиолет поглощает почти полностью. Кварцевое стекло прозрачно для ультрафиолета. Стекло с PbO поглощает рентгеновское излучение.

Силикатные триплексы – два листа закалённого стекла (δ=2…3мм), склеенные прозрачной эластичной полимерной плёнкой. При его разрушении образовываются неострые осколки, которые удерживаются на полимерной плёнке.

Широкая употребительность стекла обусловлена неповторимым и своеобразным сочетанием физических и химических свойств, не свойственным никакому другому материалу. Например, без стекла, вероятно, не существовало бы обычного электрического освещения в том виде, в каком мы его знаем. Не было найдено никакого другого материала для колбы электрической лампы, который объединял бы в себе такие важные качества, как прозрачность, теплостойкость, механическая прочность, хорошая свариваемость с металлами и дешевизна. Аналогично, прецизионные оптические элементы микроскопов, телескопов, фотоаппаратов, кино- и видеокамер и дальномеров в отсутствие стекла, вероятно, не из чего было бы изготовить. Все указанные выше свойства в конечном счете связаны с тем фактом, что стекла являются аморфными, а не кристаллическими материалами.

При комнатной температуре стекло представляет собой твердый хрупкий материал и обычно остается таковым при повышении температуры вплоть до 400С. Однако при дальнейшем нагреве стекло постепенно размягчается, вначале почти незаметно, пока, наконец, не становится вязкой жидкостью. Процесс перехода стекла из твердого состояния в жидкое не характеризуется сколько-нибудь определенной температурой плавления. При правильном охлаждении жидкого стекла этот процесс происходит в обратном направлении также без кристаллизации (деаморфизации).

КЕРАМИКА

Свойства керамики

В мире современных материалов керамике принадлежит заметная роль, обусловленная широким диапазоном ее разнообразных физических и химических свойств. Керамика не окисляется и устойчива в более высокотемпературной области, чем металлы, например температура плавления карбида гафния (39300С) на 2500 выше, чем у вольфрама. У распространенных керамических материалов (оксидов алюминия, магния, тория) термическая устойчивость намного превышает устойчивость большинства сталей и сплавов. Модуль упругости керамических волокон на порядок выше, чем у металлов.

В семействе керамик легко можно найти материалы как с большими, так и малыми (даже отрицательными) значениями коэффициента термического расширения. Также широк спектр материалов, среди которых есть и диэлектрики, и полупроводники, и проводники (сравнимые по проводимости с металлами), и сверхпроводники. Важнейшими компонентами современной конструкционной керамики являются оксиды алюминия, циркония, кремния, бериллия, титана, магния, нитриды кремния, бора, алюминия, карбиды кремния и бора, их твердые растворы и разнообразные композиты.

Перспективность керамики обусловлена многими факторами, среди которых наиболее важны следующие:

1. Керамика отличается исключительным многообразием свойств (многофункциональностью) по сравнению с другими типами материалов (металлами и полимерами). Среди видов керамики всегда можно найти такие, которые с успехом заменяют металлы и полимеры, тогда как обратное возможно далеко не во всех случаях.

2. Важным достоинством керамики является высокая доступность сырья, в том числе для получения бескислородной керамики типа карбидов и нитридов кремния, циркония или алюминия, заменяющих дефицитные металлы.

3. Технология получения конструкционной керамики, как правило, менее энергоемка, чем производство альтернативных металлических материалов. Например, затраты энергии на производство технической бескислородной керамики типа нитрида кремния значительно ниже, чем в производстве важнейших металлических конструкционных материалов.

4. Производство керамики, как правило, не загрязняет окружающую среду в такой мере, как металлургия, а сами керамические материалы позволяют принимать экологически оправданные технологические и технические решения. Примером может служить получение водорода высокотемпературным электролизом воды в электролизерах с керамическими электродами и электролитами.

5. Получение керамики обычно более безопасно, чем производство альтернативных металлических материалов (благодаря отсутствию процессов электролиза, пирометаллургии, воздействия агрессивных сред), а керамика со специальными электрическими свойствами позволяет создать высокоэффективные противопожарные системы и системы предупреждения взрывов (электрохимические детекторы, или сенсоры).

6. Керамические материалы по сравнению с металлами обладают более высокими коррозионной стойкостью и устойчивостью к радиационным воздействиям, что обусловливает долговечность керамических конструкций в агрессивных средах. В этой связи следует упомянуть, что попытка замены магнитной керамики в качестве элементов памяти ЭВМ на полупроводниковые интегральные элементы не удалась в космических аппаратах, так как оказалось, что полупроводниковые элементы под действием радиации перестают нормально функционировать.

7. Керамические материалы обладают большей биологической совместимостью, чем металлы и полимеры, и это позволяет использовать их в медицине как для имплантации искусственных органов, так и в качестве конструкционных материалов в биотехнологии и генной инженерии.

8. Использование керамики открывает возможность для создания разнообразных по свойствам материалов в пределах одной и той же химической композиции. Любое, даже самое малое керамическое изделие состоит из огромного числа кристаллитов (рис. 2), размер, форма и относительное расположение которых определяют их свойства. Отсюда возникает перспектива дальнейшей микроминиатюризации приборов с использованием керамических элементов.

Интерес к конструкционной и функциональной керамике в последние годы настолько возрос, что можно говорить о своеобразном керамическом ренессансе как важнейшей тенденции современного материаловедения. Причины этого возрождения обусловлены многими обстоятельствами, и прежде всего возможностью создания новых материалов с необходимыми свойствами.







Дата добавления: 2015-06-12; просмотров: 708. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Studopedia.info - Студопедия - 2014-2024 год . (0.037 сек.) русская версия | украинская версия