Студопедия — Движение вязкопластических жидкостей в трубах.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Движение вязкопластических жидкостей в трубах.






Для того, чтобы вязкопластичная жидкость начала перемещаться необходимо соз­дать между начальным и конечным сечениями участка трубы длиной / некотурую раз­ность напоров, при которой будет преодолена величина начального статического напря­жения сдвига . При этом жидкость отрывается от стенок трубы и первоначально дви­жется на подвижном ламинарном слое, сохраняя свою прежнюю пространственную структуру, т.е. с одинаковыми скоростями по всему отсеку потока. Разрушение этой структуры происходит позже и при некотором превышении напора.

Поскольку в начальный момент времени силы трения будут возникать только у сте­нок трубы, то уравнения равновесия можно запмсать в следующем виде:

Необходимая разность напоров между началом и концом участка трубы определится следующим образом:

Таким образом, при превышении разности напоров расчётную величину жидкость начнёт двигаться по трубе, причём характер (режим) её движения будет зависеть от вели­чины . При движении вязкопластичной жидкости возможны три режима течения её: структурный, ламинарный и тутбулентный.

Условие является необходимым для начала движения жидкости

в структурном режиме, при этом под величиной статического напряжения сдвига следует понимать величину соответствующую длительному покою жидкости, т.е. с учётом прояв­ления тиксотропных свойств жидкости.

Структурный режим течения жидкости предполагает наличие вдоль стенок трубы сплошного ламинарного слоя жидкости; в центральной части трубы наблюдается ядро те-

чения, где жидкость движется, сохраняя прежнюю свою структуру, т.е. как твёрдое тело. Размеры центрального ядра течения (радиус ) может быть определён исходя из следую­щего соотношения:

При увеличении А/г размеры ламинарной зоны будут постепенно увеличиваться за счёт уменьшения размеров ядра течения пока структурный режим не перейдёт в полно­стью ламинарный режим движения жидкости. В дальнейшем ламинарный режим посте­пенно сменится турбулентным режимом движения жидкости.

Для определения закона распределе­ния скоростей по сечению потока при структурном режиме движения жидкости запишем некоторую функцию для каса­тельных напряжений в соответствии с формулой Бингама:

Тогда распределение скоростей по сечению трубы можно выразить следующим об­разом:

?

где: - касательное напряжение на стенке трубы радиуса ,

- скорость жидкости на расстоянии от центра трубы. После интегрирования этого уравнения получим:

И окончательно:

Для определения скорости в ядре течения примем , где - радиус ядра течения

(структурной части потока жидкости). Тогда величина скорости в этом ядре течения (ско­рости в ядре течения одинаковые равны) : '

Расход жидкости при структурном движении можно определить, используя извест­ные соотношения дл круглой трубы:

Интегрируя уравнение в пределах от до , получим:

5 f

Последнее уравнение, известное как формула Букингама, можно упростить:

где: - разность давлений при начале движения жидкости, когда каса-

тельнве напряжения в ней достигают величины касательного напряже­ния сдвига. Если пренебречь величиной второго члена ввиду его малости, получим:

* где: - обобщённый критерий Рейнольдса.

Комплексный параметр = Sen носит название числа Сен-Венана.

Таким образом, при расчётах движения вязкопластических жидкостей можно поль­зоваться уравнениями для ньютоновских жидкостей, заменяя в уравнениях величину чис­ла Рейнольдса Re на обобщённый критерий Рейнольдса

Турбулентный режим течения жидкости. Характер течения вязкопластических жид­костей существенно не отличается от турбулентного потока ньютоновских жидкостей. Отличие состоит в количественных соотношениях между величинами коэффициентов трения и числом Рейнольдса. Так коэффициент трения может быть выражен как функция обобщённого числа Рейнольдса (в общем виде) следующим образом:

где: В и п - некоторые параметры, устанавливаемые по данным экспериментов. Так по данным экспериментов Б.С. Филатова величины коэффициентов В и п принимают­ся следующими:

- для неутяжелённого глинистого раствора В = 0,1 и п = 0,15,

- для утяжелённого глинистого раствора В = 0,0025 и п = -0,2.

Для расчёта трубопроводов при ждижении по ним глинистых и цементных растворов можно пользоваться формулой Б.И. Мительмана:

при: Re* =2500-40000. 12.3. Движение вязкопластичных жидкостей в открытых каналах

В практике работы горных предприятий не редки случаи, когда приходится транс­портировать неньютоновские жидкости в безнапорных потоках (самотёком), в лотках, по желобным системам. Характер течения вязкопластичных жидкостей в открытых каналах при структурном режиме идентичен аналогичному и напорному потокам такой жидкости в круглых трубах. Т.е. при структурном режиме течения жидкости также выделяется цен­тральное ядро течения, где жидкость движется как твёрдое тело, сохраняя свою первонв-чальную структуру. Ядро течения подстилается непрерывным ламинарным слоем жидко­сти. Течению таких жидкостей по открытым каналам прямоугольного профиля посвяще­ны работы Р.И. Шищенко. По данным его исследований расход вязкопластичной жидко­сти при структурном режиме движения может быть определён по приближённой формуле:

где: - скорость течения ядра потока

- площадь живого сечения канала шириной b и глубиной заполнения h,

- гидравлический уклон, соответствующий началу течения жидкости,

/ - уклон дна канала,

- гидравлический радиус живого сечения потока. 12.4. Движение неньютоновских жидкостей, подчиняющихся степенному реологическому закону, по трубам

Для жидкостей, подчиняющихся степенному реологическому закону, функция на­пряжения сдвига будет иметь следующий вид:

Тогда распределение скоростей в сечение потока будет соответствовать следующей зависимости:

Интегрируя это уравнение, найдём:

, или:

Отсюда можно получить выражение для расхода жидкости:

Отсюда определим величину перепада давления, обеспечивающую движение жидко­сти и соответствующую величину потерь напора на трение.

Сопоставляя полученное выражение с формулой Дарси-Вейсбаха, найдём величину коэффициента трения и обобщённый критерий Рейнольдса:







Дата добавления: 2015-08-30; просмотров: 438. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия