Студопедия — Примеры решения типовых задач. 1. Выяснить, являются ли данные множества предкомпактными, компактными в .
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры решения типовых задач. 1. Выяснить, являются ли данные множества предкомпактными, компактными в .






1. Выяснить, являются ли данные множества предкомпактными, компактными в .

 

Пример 1. а) ;

б) .

Решение. а) Проверим для множества М условия теоремы Арцела-Асколи. Рассмотрим функцию . Пусть . Функция непрерывна на и . Множество является компактом. По теореме Вейерштрасса функция ограничена на , т.е.

.

Значит, М равномерно ограничено (впрочем, легко проверить и непосредственно, что при наших условиях ).

Проверим равностепенную непрерывность множества М. Функция равномерно непрерывна на множестве по теореме Кантора. Если обозначить через произвольную точку из К, то равномерная непрерывность означает, что , что , таких, что , и , таких, что (ρ обозначает евклидову метрику в К), справедливо неравенство

.

Отсюда следует равностепенная непрерывность множества М (см. определение). Значит, по теореме Арцела-Асколи М предкомпактно.

Для доказательства компактности множества М теперь достаточно проверить его замкнутость в . Но это тоже следует из непрерывности функции . В самом деле, если х −предельная точка множества М, то найдется последовательность функций из М, сходящаяся к х в . По теореме Больцано-Вейерштрасса из последовательности точек множества К можно выбрать подпос-ледовательность, которую мы тоже обозначим , сходящуюся к точке . Тогда поточечно , а потому в силу единственности предела . Итак, М – компакт.

б) Так как М 1 М, то множество М 1 предкомпактно в силу а). Но М 1 не является компактом, так как не замкнуто в . Действительно, функции принадлежат , но предел этой последовательности не принадлежит множеству М 1.

 

Пример 2. .

 

Решение. 1 способ. Это множество является равномерно ограниченным, но не является равностепенно непрерывным. Действительно, возьмем . Тогда найдется такое натуральное n, что точки и удовлетворяют неравенству , но в то же время . Значит, по теореме Арцела-Асколи М не является предкомпактным, а потому и компактным множеством.

2 способ. Множество М не является предкомпактным, так как из него нельзя извлечь подпоследовательность, сходящуюся в (а потому его замыкание не обладает свойством Больцано-Вейерштрасса). Действительно, все подпоследовательности множества М сходятся к разрывной функции (какой?).

 

Пример 3. .

 

Решение. Множество М равномерно ограничено, так как

.

Множество М равностепенно непрерывно, так как и , таких, что , имеем

.

Значит, по теореме Арцела-Асколи М предкомпактно.

Покажем, что М содержит все свои точки прикосновения. Пусть х есть точка прикосновения множества М. Тогда найдутся такие числа , что равномерно на . В силу периодичности синуса можно считать, что . При этом промежуток удобно отождествлять с факторгруппой , то есть с единичной окружностью, наделенной естественной топологией, в которой она компактна. (Отличие здесь в том, что если последовательность в сходится к , то в этой топологии предел считается равным 0). Заметим, что в этой топологии существует . Действительно, если допустить противное, то найдутся две подпоследовательности и последовательности , имеющие различные пределы и соответственно. Но тогда при всех t, откуда . Противоречие. Следовательно, . Значит, М – замкнутое множество, откуда следует, что М – компакт.

Пример 4. .

 

Решение. Данное множество не является равностепенно непрерывным. Действительно, возьмем . Тогда найдется такое натуральное n, что точки и удовлетворяют неравенству , но в то же время выполняется неравенство . Значит, по теореме Арцела-Асколи М не является предкомпактным, а потому и компактным множеством.

 

2. Является ли множество М предкомпактным в ?

 

Пример 1. .

 

Решение. Проверим критерий предкомпактности в .

1) Множество М удовлетворяет первому условию, поскольку, как легко проверить, , а потому

.

2) Так как ряд сходится, то его остаток стремится к нулю, то есть

.

Поэтому

.

Значит, множество М предкомпактно.








Дата добавления: 2015-08-30; просмотров: 4774. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия