Студопедия — Примеры решения типовых задач. 1.Пусть X, Y – векторные пространства
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры решения типовых задач. 1.Пусть X, Y – векторные пространства






1. Пусть X, Y – векторные пространства. Выяснить, совпадет ли область определения оператора А с пространством Х. Является ли оператор А линейным оператором из в Y?

Пример 1. .

 

Решение. Если , то = . Поэтому в силу неравенства Коши-Буняковского

. (1)

Отсюда следует, что . Таким образом, .

Оператор А не является линейным (рассмотрите, например, ).

Хотя это и не требуется по условию задачи, исследуем оператор А на непрерывность. Для любой точки оценим расстояние

(мы воспользовались числовым неравенством , а затем неравенством (1)). Поэтому для любого получаем при что для любого из неравенства следует неравенство . Стало быть, оператор A непрерывен на .

Пример 2. .

 

Решение. В этом примере , так как, например, , но (в обоих случаях сходимость соответствующего ряда исследуется с помощью интегрального признака; докажите это).

Очевидно, A является линейным оператором (проверьте).

Хотя это и не требуется по условию задачи, исследуем оператор А на непрерывность, что равносильно исследованию его ограниченности. Докажем, что A не является ограниченным. Допустим противное, т.е. что . Полагая в последнем неравенстве , получаем

, т.е. .

Поскольку частичные суммы гармонического ряда не являются ограниченными, мы пришли к противоречию. Значит, оператор A не является непрерывным.

 

Пример 3. .

 

Решение. Пусть (тогда ). Оценка

,

показывает, что . Значит, .

Легко проверить, что А линеен (проверьте). Докажем, что А ограничен. Используя предыдущее неравенство, получаем

.

Наконец, как известно, из ограниченности оператора А следуетего непрерывность.

 

Пример 4. .

 

Решение. Здесь , так как, например, последовательность принадлежит Х, но . Далее, оператор A не является линейным (как в примере 1). Докажем, что он не является непрерывным. Действительно, возьмём следующую последовательность точек из :

Тогда в , так как

при .

В то же время,

.

Таким образом, из того, что , не следует, что . Мы показали, что А не является непрерывным в нуле, значит, A не является непрерывным на .

 

Пример 5. .

 

Решение. Очевидно, что и что A нелинеен. Покажем, что A не является непрерывным в нуле. Возьмём последовательность точек пространства . Она сходится к 0, так как при . В то же время,

при .

То есть из того, что , не следует, что . Таким образом, оператор A не является непрерывным на .

 

2. Доказать, что оператор является линейным ограниченным, и найти его норму.

 

а) Оператор умножения на функцию, действующий из X в Y.

 

Пример 1. .

 

Решение. Ясно, что A − линейный оператор (проверьте).

Далее, так как

, (2)

то A ограничен с константой ограниченности . А поскольку норма оператора есть наименьшая из констант ограниченности, то .

Докажем теперь противоположное неравенство, т. е. что . Для этого постараемся подобрать такой ненулевой вектор , для которого неравенство (2) превращается в равенство.Возьмём . Тогда, как легко подсчитать,

.

Теперь из формулы следует, что .

Сопоставляя полученные неравенства, заключаем, что .

 

б) Оператор, действующий из в .

 

Пример 1. .

 

Решение. Ясно, что A − линейный оператор. Так как

,

то оператор A ограничен, причем .

С другой стороны, для точки имеем . Значит, (почему?).

Из полученных неравенств следует, что .

 







Дата добавления: 2015-08-30; просмотров: 1459. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия