Студопедия — Применение низкотемпературной плазмы.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Применение низкотемпературной плазмы.






Разнообразное использование низкотемпературной плазмы определяется простотой её создания. Газоразрядная плазма применяется в газовых лазерах и источниках связи, в плазмохимических процессах и процессах очистки газов, для обработки поверхностей, в различных технологиях и металлургия, процессах. Низкотемпературная плазма как рабочее тело используется при преобразовании тепловой энергии в электрическую, в магнитогидродинамических генераторах и термоэмиссионном преобразователе. В плазмотроне низкотемпературная плазма выполняет роль теплоносителя. Вводимая в плазму электрическая энергия передаётся электронам, а от них – атомам или (и) молекулам газа и нагревает его. Удельная энергия, вводимая в такой газ, заметно выше энергии в пламени газовой горелки.

Применения низкотемпературной плазмы можно разделить на две стадии. В первой из них плазма является рабочим телом конкретных установок и приборов (газоразрядные лазеры и лазеры, возбуждаемые электронным пучком, МГД-генератор, термоэмиссионный преобразователь, газоразрядные источники света и т. д.); во второй — плазма составляет основу соответствующих технологий.

Технологическое применения плазмы обеспечиваются двумя её качествами. Во-первых, в плазме могут быть достигнуты гораздо более высокие температуры, чем в горелках на химическом топливе, поэтому плазма является отличным теплоносителем; во-вторых, в плазме образуется много ионов, радикалов и различных химически активных частиц, поэтому в плазме или с её помощью можно провести химические процессы в объёме или на поверхности, имеющие практическое значение.

Применение плазмы как теплоносителя связано с процессами сварки и резки металлов. Поскольку максимальная температура в химических горелках < 3000 К, они не подходят для этой цели. Дуговой разряд позволяет создать плазму с температурой в 3-4 раза выше, которая при соприкосновении с металлом расплавляет его. Плазменные методы сварки и резки металлов обеспечивают более высокую удельную производительность, качество продукта, дают меньше отходов, но требуют больших затрат энергии и более дорогого оборудования.

Плазма как теплоноситель используется в топливной энергетике. Введение плазмы в зону сжигания низкосортных углей существенно улучшает энергетические параметры процесса.

Как хороший теплоноситель плазма позволяет производить термическую обработку поверхности и её закалку. При этом не изменяется химический состав поверхности, но улучшаются её физические параметры. При другом способе обработки поверхности активные частицы плазмы вступают в химическую реакцию с материалом поверхности. Например, при проникновении ионов или активных атомов из плазмы в приповерхностный слой в нём образуются нитриды или карбиды металлов, что упрочняет поверхность. Плазма может не вступать в химическую реакцию с поверхностью, но образует на ней свои химические соединения в виде плёнок, обладающих некоторым набором механических, тепловых, электрических, оптических и химических свойств в зависимости от параметров плазмы. Толщина плёнки, напыляемой на поверхность из плазмы, пропорциональна времени плазменного процесса. Изменяя через некоторое время состав плазмы, можно создавать многослойную структуру. Обработка отдельных слоев сфокусированы излучением ртутной лампы или лазера позволяет создавать профилирующие плёнки с минимальным размером отдельных элементов в несколько микрон (см. Плазменная технология).

Низкотемпературная плазма применяется для получения ряда химических соединений, полимеров и полимерных мембран, а также при производстве порошков керамических соединений (SiC, Si3N4), металлов и окислов металлов (см. Плазмохимия).

Низкотемпературная плазма используется для анализа элементного состава вещества, осуществляемого двумя способами. В первом из них исследуемое вещество вводится в плазменную горелку – дуговой разряд с проточной плазмой – в микроколичествах либо в виде порошка, либо в виде капель. В плазме вещество диссоциирует на атомы, которые частично возбуждаются и излучают. По спектральному составу излучения определяется элементный состав вещества. Этот метод, называется эмиссионным спектральным анализом, имеет долгую историю и применяется для анализа металлов и сплавов; он позволяет надёжно определять содержание примесей в количестве, превышающем 10-3 – 10-2%.

В другом способе элементного анализа исследуемое вещество также вводится в пламя или в проточную плазму газового разряда, которые находятся между двумя электродами. Пламя или плазма облучаются излучением перестраиваемого лазера, и протекающий через плазму ток измеряется как функция длины волны излучения. Как только излучение попадает в резонанс с переходами атомов, находящихся в плазме, то изменяются условия ионизации атомов и, следовательно, разрядный ток. Этот эффект называется оптогальваническим; чувствительность методов, использующих этот эффект, на несколько порядков выше, чем в эмиссионном спектральном анализе.

 

Литература

1) Пикельнер С. Б., Основы космической электродинамики, 2 изд., М., 1966;

 

2) Акасофу С. И., Чепмен С, Солнечно-земная физика, пер. с англ., ч.1-2, М.,1974—75;

 

 

3) Смирнов Б. М., Введение в физику плазмы, 2 изд., М., 1982;

 

4) Арцимович Л. А., Сагдеев Р. 3., Физика плазмы для физиков, М., 1979;

 

 

5) Биберман Л. М., Воробьёв В. С, Якубов И. Т., Кинетика неравновесной низкотемпературной плазмы, М., 1982;

 

6) Райзер Ю. П., Физика газового разряда, М., 1987.

 

 







Дата добавления: 2015-08-31; просмотров: 677. Нарушение авторских прав; Мы поможем в написании вашей работы!



Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия