Студопедия — МЕХАНИКА
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

МЕХАНИКА

 

 

ЛАБОРАТОРНАЯ РАБОТА № 8

 

 

определение ускорения свободного падения при помощи универсального маятника

 

САНКТ-ПЕТЕРБУРГ

2011 г.

 

 

Цель работы - определить ускорение свободного падения при помощи универсального маятника.

 

Общие сведения

 

Наиболее точные измерения ускорения свободного падения выполняются с помощью косвенных методов. Многие из них основаны на использовании формул для периода колебаний математического и физического маятников.

Математическим маятником называется материальная точка, подвешенная на невесомой, нерастяжимой нити и совершающая колебание в вертикальной плоскости под действием силы тяжести. Достаточно хорошим приближением к математическому маятнику служит небольшой тяжелый шарик, подвешенный на длинной тонкой нити.

Период колебаний математического маятника

, (1)

где l - длина маятника; g - ускорение свободного падения.

Ускорение g можно вычислить, измерив Т и l. Погрешность определения g в этом случае связана с тем, что реальный маятник, используемый в лабораторных условиях, может только с некоторым приближением рассматриваться как математический (чем больше l, тем точнее измерения).

Физическим маятником называется абсолютно твердое тело, совершающее колебания под действием силы тяжести вокруг горизонтальной оси, не проходящей через его центр тяжести.

Период колебаний физического маятника

, (2)

где J - момент инерции маятника относительно оси качаний (точки подвеса); m - его масса; l - расстояние от центра тяжести до оси качаний.

Величину L = J/ (ml) называют приведенной длиной физического маятника. Она равна длине такого математического маятника, период колебаний которого совпадает с периодом данного физического маятника.

Зная T, m, l и J можно по формуле (2) найти ускорение свободного падения g. Массу маятника и период его колебаний можно измерить с очень высокой точностью, но точно измерить момент инерции не удается. Указанного недостатка лишен метод оборотного маятника, который позволяет исключить момент инерции из расчетной формулы для g.

Метод оборотного маятника основан на том, что во всяком физическом маятнике можно найти такие две точки, что при последовательном подвешивании маятника за одну или другую, период колебаний его остается одним и тем же. Расстояние между этими точками представляет собой приведенную длину данного маятника.

Оборотный маятник (рис.1) состоит обычно из металлического стержня А, по которому могут передвигаться и закрепляться в том или ином положении грузы В 1 и В 2 и опорные призмы С 1 и С 2. Центр масс маятника - точка О. Период колебаний маятника можно менять, перемещая грузы или опорные призмы. Маятник подвешивают вначале на призме С 1 и измеряют период его колебаний Т 1. Затем маятник подвешивают на призме С 2 и измеряют период колебаний Т 2.

Допустим, что нам удалось найти такое положение грузов, при котором периоды колебаний маятников Т 1 и Т 2 около призм С 1 и С 2 совпадают, т.е.

. (3)

Отсюда следует, что

(4)

По теореме Штейнера

(5)

где J 0 - момент инерции маятника относительно оси, проходящей через его центр масс и параллельной оси качаний.

С учетом формул (4) и (5) можно записать

или

.

Тогда

и

. (6)

Формула (6) аналогична формуле (1) для математического маятника. Следовательно, L = l 1 + l 2 - приведенная длина физического маятника, которая, как видно из рис.1, равна расстоянию между призмами С 1 и С 2, когда Т 1 = Т 2. Это расстояние легко может быть измерено с большой точностью.

Итак, измерение ускорения свободного падения g с помощью оборотного маятника сводится к измерению периодов Т 1 и Т 2 относительно призм С 1 и С 2, достижению их равенства (с помощью перемещения призм), измерению расстояния L = l 1 + l 2 между призмами и вычислению

(7)

Чтобы пояснить процедуру достижения равенства периодов Т 1 и Т 2, исследуем, как зависит период колебаний от расстояния l между центром масс и осью качаний маятника. Согласно формулам (2) и (5), имеем

 
 

Период минимален при l min = (рис.2). При Т > Т min одно и то же значение Т достигается при двух разных значениях l; одно из них больше, а другое меньше l min. Эти значения l 1 и l 2 и входят в формулу (1).

Вначале измеряется период колебаний маятника Т 1 относительно призмы С 1. Затем маятник переворачивается и измеряется период колебаний Т 2 относительно призмы С 2. Если при этом получится , то этому будет соответствовать . И для того, чтобы приблизить и Т 1, надо увеличить . Для этого надо призму С 2 передвинуть от середины стержня к краю. Если получится < Т 1, то призму С 2 надо будет передвинуть к середине стержня.

Анализ точности измерения g методом оборотного маятника показывает, что погрешность измерения слабо зависит от точности, с которой выполняется равенство Т 1 = Т 2. Достаточно добиться того, чтобы периоды оказались равны друг другу с точностью 0,5 %.

Кроме того, для получения достаточной точности измерения отношение l 1/ l 2 не должно быть ни слишком малым, ни слишком большим, желательно, чтобы 1,5 < l 1/ l 2 < 3.

 

Порядок выполнения работы

 

В основании 1 универсального маятника закреплена колонка 7, на которой зафиксирован верхний кронштейн 4 и нижний кронштейн 9 с фотоэлектрическим датчиком 10 (рис.3). Отвинчивая винт 5, верхний кронштейн можно поворачивать вокруг колонки. С одной стороны кронштейна 4 находится математический маятник 2, с другой - на вмонтированных вкладышах оборотный маятник 8.

Длину математического маятника можно регулировать при помощи винта 3 и определять при помощи шкалы на колонке.

Оборотный маятник выполнен в виде стального стержня, на котором крепятся две призмы (ножа) С 1 и С 2 и два диска 6. На стержень через 10 мм нанесены кольцевые нарезки, служащие для точного определения длины оборотного маятника (рас­стояние между призмами). Нижний кронштейн вместе с фотоэлектрическим датчиком можно перемещать вдоль колонки. Фотоэлектрический датчик соединен с привинченным к основанию универсальным электронным секундомером 11, который измеряет число колебаний n и общее время этих колебаний t. Период колебаний T = t / n.

Последовательность проведения измерений с математическим маятником следующая:

1) поместить над датчиком математический маятник, повернув соответствующим образом верхний кронштейн;

2) отклонить маятник на угол примерно 5° и придерживать шарик рукой;

3) отпустив шарик, привести маятник в движение;

4) измерить время 10 колебаний (n=10);

5) повторить пп.1-4 еще пять раз;

6) по шкале на вертикальной колонке прибора определить длину маятника.

При обработке результатов эксперимента определить период колебаний математического маятника T = t/n и вычислить ускорение свободного падения для каждого измерения и среднее .

По результатам опыта составить таблицу:

 

Таблица 1

Физ. величина t Ti gi
Ед. измерения Номер опыта      
       
       
     
n      

 

Средняя квадратичная ошибка для g

Записать окончательный результат в виде .

 

Последовательность проведения опыта с оборотным маятником следующая:

1) поместить над датчиком оборотный маятник, повернув верхний кронштейн на 180°;

2) зафиксировать диски на стержне, чтобы один из них находился вблизи конца стержня, а другой вблизи его середины;

3) закрепить маятник на верхнем кронштейне на призме, находящейся вблизи конца стержня;

4) отклонить маятник примерно на 5° от положения равновесия и придерживать его рукой;

5) отпустив маятник, привести его в движение;

6) измерить время t 10 колебаний маятника;

7) определить период колебаний оборотного маятника T 1 = t / n;

8) снять маятник и закрепить его на второй призме;

9) измерить период Т 2, повторив пп.4-7;

10) сравнить периоды Т 2 и T 1; если Т 2 > T 1, вторую призму переместить в направлении диска, находящегося в конце стержня; если Т 2 < T 1, переместить ее в направлении середины стержня (положение дисков и первой призмы не менять);

11) снова измерить период Т 2 и сравнить его с величиной T 1; менять положение второй призмы до тех пор, пока значение периода Т 2 не станет равным значению периода T 1 с точностью до 0,5 %;

12) определить приведенную длину оборотного маятника L, измерив расстояние между призмами (по числу нарезок, которые нанесены через каждые 10 мм).

При обработке результатов эксперимента вычислить ускорение свободного падения при Т = Т 1 = Т 2 и среднюю квадратичную ошибку , где - погрешность измерения времени, оцениваемая исходя из точности прибора.

Средняя квадратичная ошибка

где - погрешность измерения длины, оцениваемая по цене деления измерительной линейки.

Окончательный результат записать в виде .

 

Контрольные вопросы

 

1. Что такое математический маятник?

2. Что такое физический маятник?

3. Почему с помощью маятников можно измерить ускорение свободного падения?

4. С чем связана погрешность определения g с помощью математического маятника?

5. С чем связана погрешность определения g с помощью физического маятника и как ее устранить?

6. В чем заключается метод оборотного маятника?

 

МЕХАНИКА

 

 

ЛАБОРАТОРНАЯ РАБОТА № 11

 

 

определение отношения теплоёмкости при постоянном давлении к теплоёмкости при постоянном объёме ДЛЯ воздуха методом стоячей волны

 

 

САНКТ-ПЕТЕРБУРГ

2011 г.

 

Цель работы - определить g = C p/ CV методом стоячей звуковой волны.

 

Общие сведения

Рассмотрим, как распространяется звуковая волна в закрытой цилиндрической трубе, заполненной воздухом. В момент времени t = 0 мембрана телефона T (рис.1) начинает двигаться вправо с постоянной скоростью . Молекулы воздуха вблизи мембраны придут в движение и тоже будут перемещаться вправо со скоростью . Непосредственно около мембраны возникнет область сжатия, давление внутри которой р = р 0 + D р, где р 0 - первоначальное давление воздуха. Сжатый слой воздуха передаст импульс молекулам, расположенным справа, приводя таким образом в движение соседний слой. В течение второй части периода мембрана движется влево, создавая справа от себя область разрежения, в которую устремляются молекулы из сжатого слоя. Таким образом, молекулы воздуха совершают колебательное движение в направлении колебаний мембраны. В среде при этом распространяются, чередуясь, области сжатия и разрежения воздуха (области повышенного и пониженного давления), что и представляет собой бегущую звуковую волну. Звук является продольной волной, т.к. частицы среды совершают колебания вдоль направления распространения. Будем описывать распространение волны с помощью фазовой скорости - скорости распространения в пространстве поверхностей, образованных частицами, совершающими колебания в одинаковой фазе.

Импульс силы , с которой мембрана в течение времени D t давит на газ

, (1)

где S - площадь мембраны, D p – избыточное давление, обусловленное силой .

С другой стороны, импульс внешней силы равен приращению импульса (количества движения), которое получил газ:

, (2)

где - плотность сжатого воздуха; - плотность воздуха в начальный момент времени; - масса сжатого воздуха; - длина столба воздуха (путь, который прошла волна за время ). Объединяя равенства (1) и (2), получим

. (3)

До движения мембраны масса воздуха m в отрезке трубы длиной составляла r 0 . При смещении мембраны на u D t плотность воздуха меняется, и в этом случае его массу можно представить (рис. 1)

,

или

,

После простых алгебраических преобразований получим

. (4)

Подставив равенство (3) в формулу (4), можно записать

. (5)

Если изменения плотности и давления малы (Dr << r0 и D p << p 0), то скорость распространения волны

. (6)

С точки зрения термодинамики процесс распространения звуковой волны в газе можно рассматривать как адиабатический, так как изменение давления происходит так быстро, что смежные области среды не успевают обмениваться теплом.

Адиабатический процесс описывается уравнением pVg = const. Так как V = M/ r (здесь М - масса газа), то p (M/r) g = const. Продифференцировав это равенство с учётом изменения давления и плотности, получим

,

откуда

,

т.е. в соответствии с формулой (6)

, (7)

где r - плотность газа при данном давлении и температуре, r = p m /RT; m - молярная масса газа; R - универсальная газовая постоянная; T - абсолютная температура.

Подставив r в уравнение (7), получим

,

откуда

. (8)

Таким образом, для вычисления g необходимо определить скорость распространения звуковых колебаний. В работе эта скорость определяется методом стоячей волны.

Если в трубе, один конец которой закрыт, возбудить звуковые колебания, в ней в результате наложения двух встречных волн (прямой и отражённой) с одинаковыми частотами и амплитудами будут возникать стоячие волны. В определенных точках амплитуда стоячей волны равна сумме амплитуд обоих колебаний и имеет максимальное значение; такие точки называются пучностями. В других точках результирующая амплитуда равна нулю, такие точки называются узлами. Расстояние между ближайшим узлом и пучностью равно l/4, где l - длина бегущей звуковой волны. Таким образом, измерив расстояние между узлом и пучностью или между двумя ближайшими пучностями (l/2), можно найти длину бегущей звуковой волны l. Фазовая скорость волны рассчитывается через длину волны по соотношению

u = ln, (9)

где n - частота колебаний.

 

 

Порядок выполнения работы

 

Описание экспериментальной установки.

В экспериментальную установку (рис.2) входят: стеклянная труба, в которой создаётся стоячая волна, звуковой генератор (ЗГ), микровольтметр, частотомер (Ч). В стеклянную трубу вмонтированы неподвижный микрофон (М) и телефон (Т), который может свободно перемещаться вдоль оси трубы.

Звуковой генератор вырабатывает синусоидальное напряжение звуковой частоты, которое подается на телефон. Переменный ток приводит в колебательное движение мембрану телефона, являющуюся излучателем звуковой волны. Отражённая от противоположной стенки трубы волна движется навстречу излучаемой и происходит их наложение. В результате в трубе возникает стоячая звуковая волна. В микрофоне происходит преобразование механической энергии волны в энергию электрического тока, величина которого измеряется микровольтметром. Частота звуковой волны устанавливается лимбом на генераторе, точное значение частоты измеряется частотомером. При перемещении телефона вдоль трубы ток в цепи микрофона будет меняться от минимального, когда микрофон попадает в узел, до максимального, когда он попадает в пучность. Таким образом, следя за показаниями микровольтметра, можно найти положения нескольких пучностей стоячей волны и вычислить ее длину.

Последовательность проведения измерений:

1) включить ЗГ и частотомер в сеть, прогреть приборы в течение 3-5-ти минут;

2) после прогрева установить необходимую частоту колебаний на звуковом генераторе (указанную преподавателем), измеряя точное значение частоты частотомером;

3) перемещая телефон вдоль трубы, найти ближайшее к левому концу трубы положение телефона lk, при котором показание микровольтметра максимально, записать его в таблицу;

4) зафиксировать еще два-три положения, при которых показания микровольтметра максимальны;

5) вычислить разность между соседними отсчётами d lk = lklk – 1 для всех наблюдавшихся пучностей, усреднить полученные значения;

6) по среднему расстоянию между пучностями рассчитать длину бегущей волны l= 2× и скорость по формуле (9);

7) повторить пп.3-6 для 4-5-ти значений частоты в интервале 1000-1800 Гц.

8) измерить температуру воздуха в помещении;

9) рассчитать g по формуле (8) при m = 2,9×10-2 кг/моль (воздух), R = 8,31 Дж/(моль×К);

10) результаты измерений и расчётов оформить в виде таблицы:

 

 

Таблица 1.

Физ. величина n lk d lk l u g
Ед. измерения Номер опыта            
1.            
           
           
средние     l = 2×    
2.            
           
n            

 

11) найти среднее значение ;

12) рассчитать погрешность косвенных измерения g.

 

Контрольные вопросы

 

1. Что такое теплоемкость, молярная теплоемкость, удельная теплоемкость? Как они связаны? Какова размерность теплоемкости? От чего зависит молярная теплоемкость?

2. Почему Cp > CV с точки зрения первого начала термодинамики?

3. Что такое бегущая и стоячая звуковая волна? Каковы ее основные характеристики?

4. Каков механизм распространения звуковой волны?

5. Что представляет собой звуковая волна с точки зрения термодинамики? Каким уравнением и графиками описывается рассматриваемый процесс?

6. От чего зависит скорость распространения звуковой волны?




<== предыдущая лекция | следующая лекция ==>
МЕХАНИКА. измерение скорости полета пули с помощью баллистического маятника | Лабораторная работа № 6. определение отношения теплоёмкости при постоянном давлении к теплоёмкости при постоянном объёме ДЛЯ воздуха методом стоячей волны

Дата добавления: 2015-08-27; просмотров: 1069. Нарушение авторских прав; Мы поможем в написании вашей работы!



Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия