Студопедия — Правило неявного дифференцирования
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Правило неявного дифференцирования






Рассмотрим пример.

Пример 4.5. Пусть функция задана неявным образом .

Вычислить .

Решение. Продифференцируем обе части уравнения по переменной .

Получаем уравнение, которое неявным образом задаёт производную функции

(4.1)

Отсюда находим

(4.2)

Из формулы (4.2) видно, что при неявном дифференцировании производная зависит и от аргумента и от значения функции .

Вычисляем вторую производную. По определению вторая производная это производная от первой производной (1.5).

При неявном дифференцировании для вычисления второй производной необходимо

знать уравнение, которому удовлетворяет первая производная. В нашем случае это

уравнение (4.1):

Применяя правило неявного дифференцирования, получаем

Получаем уравнение для вычисления (4.3)

Отсюда находим : .

Замечание. При неявном дифференцировании вторая производная зависит от аргумента , от функции и её производной .

Пример 4.6. Найти уравнение касательной и нормальной прямой в точке к линии заданной уравнением .

Решение. Пусть переменная будет аргументом функции . В данном случае функция задана неявным образом. Уравнения касательной и нормали в точке касания имеют вид

(4.4)

и

(4.5)

соответственно.

Как видно из этих уравнений нам потребуется значение производной функции в точке касания. Применяя правило неявного дифференцирования, вычисляем производную в точке

Отсюда выписываем уравнение для определения производной

и вычисляем . Поэтому

Подставляя вычисленные значения в уравнение касательной (4.4), получаем

. Подставляя вычисленные значения в уравнение нормали (4.5),

получаем .

Параметрические задания кривых.

Существует ещё один способ задания кривых, при котором координаты

считаются равноправными: это задание кривых параметрическими уравнениями.

Координаты являются функциями некоторого параметра (скажем, времени)

(4.6)

Параметр обычно изменяется в каком-нибудь интервале .

Пример 4.7. Определить уравнения кривых заданных параметрическими уравнениями

Решение. Анализируем первую систему уравнений. Возводим оба уравнения системы 1) в квадрат и, складывая, получаем . Данная кривая это окружность единичного радиуса: . Аналогично для системы 2) получаем . Это уравнение прямой линии .

Если при параметрическом задании функции считать переменную функцией, а переменную аргументом то возникает вопрос каким образом вычислить производную функции по аргументу . Для этого существует правило

параметрического дифференцирования. Причем производная также записывается

в параметрическом виде.

Теорема 4.1. Пусть функция задана в параметрическом виде

Тогда её производная по аргументу записывается в параметрическом виде формулами

(4.7)

Обозначим для простоты записи , тогда формулу (4.7) можно переписать

в виде (4.8)

Поскольку вторая производная есть производная от первой производной, то применяя правило параметрического дифференцирования к параметрической записи первой производной (4.8) получаем параметрическую запись второй производной

(4.9)

 







Дата добавления: 2015-08-29; просмотров: 429. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия