Студопедия — Неопределенный интеграл
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Неопределенный интеграл






 

Пример 1. Найти интеграл .

Решение. Поделив каждое слагаемое числителя подынтегральной дроби на знаменатель, и используя, что интеграл от суммы функций равен сумме интегралов от этих функций, получим:

.

Первый интеграл является табличным: .

Во втором интеграле воспользуемся тем, что .

Получим следующую запись .

Если представить, что arcsinx=t, то данный интеграл будет интегралом от степени , но явно переходить к переменной t нет необходимости.

.

Таким образом, для заданного интеграла имеем:

.

 

Пример 2. Найти интеграл .

 

Решение. Как и в примере 1, вычислим дифференциал .

Числитель подынтегральной дроби преобразуем тождественно к виду, содержащему . Исходя из преобразований, сделанных выше, получаем:

.

Разделив почленно подынтегральную функцию, получим:

Первый интеграл это интеграл вида .

.

Для того чтобы вычислить второй интеграл, выделим полный квадрат из выражения ():

Второй инте грал теперь будет иметь следующий вид:

.

С учетом того, что , этот интеграл табличный.

Таким образом, для заданного интеграла имеем:

.

 

Пример 3. Найти интеграл .

 

Решение. Воспользуемся формулой интегрирования по частям:

.

В выражении, стоящем под знаком интеграла, обозначим: , а .

По данным и , для составления правой части формулы, вычисляем и :

, .

Составляем правую часть формулы интегрирования по частям, записывая вместо их выражения.

Пример 4. Найти интеграл .

Решение. Отделим от нечетной степени один множитель: .

Если положить , то . Перейдем в интеграле к новой переменной t:

Возвратившись к прежней переменной, получаем: .

 

Пример 5. Найти интеграл .

Решение. Понизим у и степень с помощью следующих формул: .

Тогда в исходном интеграле получим следующее:

Первый интеграл является табличным: , а во втором интеграле применим формулу понижения степени. Тогда искомый интеграл преобразуется к виду:

.

 

Пример 6. Найти интеграл .

Решение. С помощью формул тригонометрии: , такие подынтегральные выражения приводятся к рациональным выражениям, зависящим от . Получаем:

,

а интеграл приобретает следующий вид:

.

Применив универсальную тригонометрическую замену

, получим интеграл .

Возвратившись к прежней переменной, имеем:

.

 

Пример 7. Найти интеграл .

Решение. Разложим подынтегральную функцию на сумму простейших дробей. Чтобы разложить знаменатель на сомножители нужно решить квадратное уравнение . Его корнями являются . Теперь знаменатель может быть представлен следующим образом

.

Тогда наша дробь представима в виде суммы элементарных дробей:

.

Нужно найти неизвестные коэффициенты A,B,C. Для этого приведем дроби к общему знаменателю:

.

Так как дроби между собой равны, а также равны их знаменатели, то и числители также равны. Поэтому у многочленов, стоящих в числителе приравняем коэффициенты при х210 и получим систему трех уравнений с тремя неизвестными:

.

Решив эту систему получим следующие значения A, B и C: .

Значит, наша дробь раскладывается на сумму дробей:

.

Подставляя это разложение в интеграл, получаем:

Пример 8. Найти интеграл .

Решение. Для того, чтобы избавиться от иррациональности в подынтегральном выражении, нужно сделать следующую замену:

Тогда данный интеграл запишем в виде:

Подынтегральное выражение представляет собой неправильную дробь, в которой нужно выделить целую часть путем деления многочлен на многочлен: .

Возвращаясь к интегралу, получим:







Дата добавления: 2015-09-19; просмотров: 346. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия