Студопедия — Запись положительных рациональных чисел в виде десятичных дробей
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Запись положительных рациональных чисел в виде десятичных дробей






В практической деятельности широко используются дроби, знаменатели которых являются степенями 10. Их называют десятичными.

Определение. Десятичной называется дробь вида , где m и n - натуральные числа.

Десятичные дроби принято записывать без знаменателя. Например, дробь - записывают в виде 3,67, а дробь - в виде 0,007. Выясним, как образуется такая запись.

Пусть дана дробь где m, nÎN. Представим ее числитель в следующем виде:

m=ак∙10kк-1∙10k-1+…+а1∙10+а0. Тогда, по правилам действий над степенями при п<к, получим:

- Сумма ak∙10k-n+…+anявляется записью целого неотрицательного числа (обозначим его буквой А), а сумма представляет дробную часть числа, ее принято записывать без знаменателя в виде . Таким образом, дробь можно представить в следую­щем виде: , т.е. при записи дроби последние nцифр десятичной записи числа mотделяют запятой. Если числитель содержит менее чем nдесятичных знаков, то перед ним пишут столько нулей, чтобы получилась n+1 цифра, после чего отделяют запятой nзнаков, начиная с конца.

Например,

Как известно, сравнение десятичных дробей и арифметические действия над ними легко выполнять, если дроби имеют один и тот же знаменатель.

В основе приведения десятичных дробей к общему знаменателю лежит следующее утверждение: если к десятичной дроби приписать справа любое число нулей, то получится десятичная дробь, равная данной.

Это свойство позволяет приводить десятичные дроби к общему знаменателю следующим образом: если у одной дроби после запятой стоит n цифр, а у другой p цифр, причем n <p, то для приведения их к общему знаменателю достаточно к первой дроби приписать спра­ва p-n нулей. Тогда у обеих дробей после запятой будет стоять по­ровну цифр, а это значит, что они имеют один и тот же знаменатель.

Пользуясь этим правилом, легко выполнять сравнение десятичных дробей, так как оно сводится к сравнению натуральных чисел: чтобы сравнить две десятичные дроби, надо уравнять в них число десятичных знаков после запятой, отбросить запятые и сравнить получившиеся натуральные числа.

Например, 4,62517 > 4,623, так как 4,623 = 4,62300, а 4,62517 > 4 62300 так как 462517 > 462300.

Как известно, для дробей, имеющих одинаковые знаменатели сложение и вычитание сводится к соответствующим операциям над их числителями. Это позволяет свести сложение и вычитание десятичных дробей к действиям над натуральными числами.

Например,

Умножение и деление десятичных дробей не требует приведения их к общему знаменателю, но они также сводятся к соответствующим действиям над натуральными числами.

Среди десятичных дробей выделяют и часто используют дробь 0,01. Ее называют процентом и обозначают 1%. Запись p%обозначает Например, 25% - это дробь , или 0,25.

Проценты были введены, когда не существовало десятичных дробей. Чтобы производить расчеты по займам, определяли прирост капитала из расчета 100 денежных единиц. Этот прирост и называли числом процентов (pro centum - на сто).

Простота сравнения и выполнения действий над десятичными дробями приводит к следующему вопросу: любую ли дробь вида (n, mÎ N) можно записать в виде конечной десятичной дроби, т.е. дроби, у которой после запятой стоит конечное число цифр? Ответ на него дает следующая теорема.

Теорема. Для того чтобы несократимая дробь была равна десятичной, необходимо и достаточно, чтобы в разложение ее знаме­нателя nна простые множители входили лишь простые числа 2 и 5.

Так, например, дробь можно записать в виде десятичной: она несократима и 80 = 24∙5. Дробь несократима, но 15 = 35. По­скольку в разложение знаменателя этой дроби входит множитель, отличный от 2 и 5, то дробь нельзя записать в виде десятичной.

Дробь нельзя представить в виде конечной десятичной дроби. Но, деля 1 на 3, получаем, что 0,3< < 0,4. Далее находим, что 0,33 < < 0,34; 0,333 < < 0,334 и т.д. Вообще для любого nимеем:

Вместо того чтобы писать бесконечное множество неравенств, говорят, что дроби соответствует бесконечная десятичная дробь 0,33...3.... Это означает, что если отбросить в бесконечной дроби все цифры, начиная с некоторой, то будем иметь число, меньшее , а если в полученном числе увеличить последнюю цифру на 1, то будет число, большее .

Любую конечную десятичную дробь можно записать в виде бесконечной, приписав к ней справа последовательность нулей. Например, дробь 0,25 можно записать так: 0,25000...0.... Здесь для всех цифр, начиная с некоторой, получится число, не превосходящее 0,25 (например, если оставить лишь одну цифру после запятой, то получится 0,2, меньшее 0,25, а если оставить три цифры после запятой, то будет число 0,250, равное 0,25). Если же после отбрасывания увеличить последнюю цифру на 1, то имеем число, большее 0,25 (например, 0,3 или 0,251).

Бесконечные десятичные дроби, которые получаются при записи положительного рационального числа, обладают особенностью - они являются периодическими. Это значит, что, начиная с некоторой циф­ры, они образуются бесконечным повторением одной и той же группы цифр. Например, число выражается бесконечной десятичной дробью 0,272727...27..., а число - бесконечной десятичной дробью 0,1454545...45.... Для краткости первую из дробей пишут в виде 0,(27), а вторую - в виде 0,1(45). В скобки заключают повторяющуюся груп­пу цифр, которую называют периодом этой дроби. Отметим, что вме­сто 0,(27) можно было написать и 0,2(72), но эта запись более длинная. Приведенные рассуждения приводят к следующей теореме.

Теорема. Любое положительное рациональное число представимо бесконечной периодической десятичной дробью.

Доказательство. Пусть рациональное число представлено несократимой дробью . Чтобы преобразовать ее в десятичную, надо выполнить деление натурального числа mна натуральное число nПри этом будут остатки, меньшие n, т.е. числа вида 0, 1, 2,... n-1. Если хотя бы один из остатков окажется равным нулю, то после деления получится конечная десятичная дробь (или, что то же самое, бесконечная десятичная дробь, заканчивающаяся последовательностью нулей). Если же все остатки отличны от нуля, то деление будет представлять собой бесконечный процесс, но количество различных остатков конечно, и поэтому, начиная с некоторого шага, какой-то остаток повторится, что приведет к повторению цифр в частном.







Дата добавления: 2015-09-19; просмотров: 783. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия