Студопедия — ЗАКОНОМЕРНОСТИ СВОЙСТВ ПРИРОДНОГО КАМНЯ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ЗАКОНОМЕРНОСТИ СВОЙСТВ ПРИРОДНОГО КАМНЯ






 

Все минералы и горные породы обладают определенными зави­симостями их свойств от состава и структуры. Но эти частные зави­симости исходят из некоторых обобщенных, когда одна из них ока­зывается общей для многочисленных разновидностей природного камня. Подобная общая зависимость становится закономерностью и может иметь большое практическое значение при выборе камня для строительных целей.

Выше отмечалось, что по составу породы могут быть моно- и полиминеральными. Качественные характеристики первых опреде­ляются свойствами их породообразующего минерала, формой и раз­мером его частиц, дефектами структуры, типом химической связи между частицами, макро- и микропористостью и т. п. Кварцитам, например, передаются свойства их породообразующего компонента кварца: высокие твердость, плотность и механическая прочность; малые деформативность (хрупкость), раковистость излома, высокая стойкость к химическому выветриванию и др. На физико-механиче­ских свойствах известняков отражаются характерные особенности породообразующего кальцита: сравнительно легкая растворимость в воде, низкая твердость и совершенная спайность, с которыми свя­зана пониженная прочность этих пород. Такое влияние свойств кальцита отражается также на свойствах мраморов, являющихся метаморфизованными разновидностями известняков. И хотя высокие температура и давление несколько уменьшают влияние кальцита как породообразующего компонента, его физико-химические свой­ства и кристаллохимические особенности играют определяющую роль в процессе формирования структуры и свойств мраморов. Но особенно отчетливо прослеживается негативное влияние совершен­ной спайности кальцита на прочность крупнокристаллических раз­новидностей карбонатных пород химического генезиса. Снижение их прочности при механическом воздействии объясняется прежде всего разрушением частиц кальцита по плоскостям спайности, а также по границам их контакта друг с другом.

В отношении известняков, осадочных мономинеральных пород, отчетливо прослеживается следующая закономерность: у малопори­стых их разновидностей значения показателей прочности, плотно­сти, упругости и некоторых других свойств приближаются к величи­нам показателей тех же свойств их породообразующего минерала кальцита. Эта же закономерность справедлива для кварцитов и мра­моров — пород метаморфического генезиса, несмотря на то, что в условиях метаморфизации могут нарушаться структура и свойства не только исходной породы, но и ее породообразующего минерала (принцип Ле-Шателье), даже при неизменном химическом составе, т. е. в случае изохимической перекристаллизации.

С увеличением пористости, а также с появлением неплотностей в контактах и некоторых других структурных дефектов, неизбежно возникающих при формировании мономинеральных пород, их упругие и прочностные свойства интенсивно снижаются.

Аналогичные явления происходят в полиминеральных породах, когда превалирующий количественно породообразующий минерал оказывает наиболее заметное влияние на формирование определен­ных свойств породы. У магматических пород, например гранитов, с увеличением содержания кварца, имеющего очень высокий предел прочности при сжатии (около 2000 МПа), повышается механическая прочность. Наоборот, увеличение количества полевых шпатов и слюды в этих породах снижает их прочность, обычно составляю­щую до 200 МПа для мелкозернистых и до 120—140 МПа для круп­нозернистых их разновидностей. Это происходит вследствие того, что полевой шпат не отличается высоким пределом прочности при сжатии, аналогично кварцу (всего около 170 МПа), а слюда с прису­щей ей высокой спайностью и способностью образовывать плоскости скольжения способствует механическому разрушению гранита с появлением внутренних скалывающих напряжений. При небольшом количестве слюды или полной ее замене роговой обманкой гранит приобретает повышенные вязкость и прочность (в том числе и на ударную нагрузку). С повышением пористости у выветрелых и одресвелых гранитов их прочность быстро снижается, достигая 80—60 МПа и ниже. Аналогичное влияние увеличения пористости обнаруживается на показателях модуля упругости: при возрастании пористости в 5 раз, т. е. с 0,6 до 3,0%, значение этого показателя у крупнозернистого гранита понижается с 6,0∙104 до 1,6∙104 МПа и вместе с тем в связи с необратимым расшатыванием его структуры одновременно отмечается повышение остаточной деформации.

Многие осадочные породы также являются полиминеральными агрегатами, часто состоящими из неодинаковых по размеру обломков минералов и горных пород. Свойства этих сложных пород (брекчий, конгломератов и др.) обусловливаются как свойствами самих облом­ков, так и особенно свойствами природного вяжущего вещества, вы­полняющего роль матричного компонента моно- или полиминераль­ного состава. Природные цементы могут быть аморфными или крис­таллическими. Наиболее прочные — кварцевый, кремнистый и опало­вый мономинеральные равномерно-зернистые цементы. Значительно уступают им по прочности разнозернистые полимиктовые цементы, состоящие из минеральных зерен различного химического состава с неодинаковыми размерами частиц. Наименьшей цементирующей способностью отличаются глинистые и растворимые соединения (гли­ны, гипсы и др.). Эту группу пород можно по аналогии сравнивать с ис­кусственными строительными конгломератами (например, с бетона­ми), формирование структуры которых происходит под влиянием вя­жущих веществ в заводских условиях.

Выше отмечалось, что на прочность и другие качественные показа­тели горных пород существенное влияние оказывает пористость. В по­родах она может быть очень грубой (туфы), крупной (ракушечники), мелкой и тончайшей, незаметной даже под микроскопом (диатоми­ты). В породах различают первичную пористость, обычно закрытую, и тонкодисперсную, зависящую от характера упаковки, формы и раз­мера частиц, их взаимного расположения, величины того перво­начального давления, которое испытывали породы в процессе формирования структуры. Пористость может быть также вторичной и чаще всего открытой, возникшей на более поздних стадиях отвердева­ния породы или осадка, при растворении или замещении в них отдель­ных минералов, особенно в результате последующего выветривания. Вторичные поры всегда имеют более устойчивые и сохранившиеся размеры, так как, возникая в уже затвердевшей массе, они в меньшей степени подвержены последующему спрессовыванию или заполнению новыми минеральными веществами.

Являясь важным структурным элементом, поры вместе с минера­льными частицами непосредственно и активно участвуют в форми­ровании свойств горных пород. Б.П. Беликовым и другими были выполнены исследования упругих характеристик многих горных по­род общим импульсным ультразвуковым методом. Изучались как изотропные моно- и полиминеральные, так и анизотропные породы с определением модуля Юнга Е, модуля сдвига С, модуля объемно­го сжатия К, скорости распространения продольной волны \р и не­которых других параметров упругих свойств. Установлено, что при весьма малой пористости, например меньшей 1%, упругие свойства минералов и пород определяются в основном их минеральным со­ставом. С увеличением же пористости значения упругих и прочност­ных свойств снижаются в соответствии с эмпирическим уравнением

(8.1)

где через М и Мo обозначены любые из упругих свойств (параметров) камня с порами (М) и без пор или с их минимумом (Мo), а через т1 и т2 — величины вторичной и первичной пористости.

Общий характер влияния пористости на механические свойства пород и минералов можно выразить наглядно в виде графической за­висимости в системе координат «свойства = f (пористость)». График имеет вид сложной экстремальной кривой, состоящей из вершины и двух ниспадающих от нее ветвей (рис. 8.7). Вершина кривой соответст­вует наибольшим значениям параметров упругости, прочности, плотности минералов и пород, когда их пористость предельно мала (меньше 1%). На ветви, расположенной слева от вершины экстремаль­ной кривой, располагаются показатели свойств, которые снижаются по мере возрастания первичной пористости пород. Это снижение ха­рактеризуется сравнительно умеренной интенсивностью, вызывае­мой наличием закрытых мелких и тончайших по своим размерам пор, особенно у минералов. На абсолютные значения свойств кроме порис­тости влияют также характер внутренних связей между микро- и мак­рочастицами минерального вещества, свойства минералов и другие факторы, которые обусловливают, кроме того, сравнительно боль­шой разброс опытных данных, особенно при испытании интрузивных и метаморфических пород.

 

Рис. 8.7. Схема действия закона створа в горных породах и минералах

 

Справа от вершины экстремальной кривой размещается ветвь интенсивного спада упругих и прочностных свойств при увеличении вторичной (открытой) пористости с характерными для нее более крупными порами. Разброс опытных данных здесь меньше, чем в области левой ветви, и совсем незначителен на отрезке кривой, близкой к вершине. Аналогичное совпадение показателей свойств при изменении вторичной пористости отмечается и при испытании образцов из эффузивных и осадочных пород.

В мономинеральных породах на максимум величин показателей свойств влияет, как отмечалось, уровень соответствующих значений породообразующего минерала; в полиминеральных — некоторый усредненный их уровень, обусловленный минеральным составом, ко­личественным соотношением и характером связей минералов. А в обо­их случаях на величины экстремумов свойств влияют наличие пор и микропор, степень дефектности структуры и др. К экстремумам пока­зателей свойств горные породы и минералы приближаются в результа­те очень длительных процессов структурообразования с постепенным набором в природных условиях таких параметров, при которых воз­никает своеобразная оптимальная структура. Закономерное протека­ние этих процессов в природе может прерываться стихийными, в том числе тектоническими, осложняемыми вулканической деятельностью явлениями, которые могут резко изменять и даже прерывать процесс формирования структур и свойств пород как на ограниченных, так и на огромных участках земной коры. Нарушение закономерного про­цесса структурообразования возможно также под влиянием измене­ния климатических, географических условий и других факторов. В одном и том же месторождении могут встречаться представители по­род, разнородные по структуре и свойствам, причем только некото­рые участки пород в данном месторождении могут оказаться с оптимальной структурой и комплексом экстремальных значений свойств в вершине кривой. Породы других участков того же место­рождения, испытавшие влияние неблагоприятных факторов, отмечен­ных выше, не приобретают оптимальной структуры и не отличаются высокими показателями свойств (например, прочностных). Несмотря на то, что естественный процесс оптимизации структуры может неод­нократно прерываться, он постоянно и последовательно продолжается во времени, поскольку связан в конечном итоге с приближением ее к равновесному состоянию и нарастанию термодинамической устойчи­вости горных пород.

Зависимость свойств природного камня от состава и оптималь­ной структуры отражает объективно существующую закономер­ность, которую при обобщении многочисленных опытных данных можно выразить следующим образом: при определенном наборе структурных параметров формируется оптимальная структура при­родного камня, при которой имеется комплекс экстремумов механи­ческих и некоторых физических свойств, непосредственно связан­ных со структурой и отражающих ее характер. Действует и обратная связь: комплекс экстремумов свойств горной породы или минерала отражает наличие оптимальной структуры с характерны­ми для нее относительной однородностью, минимальной пористо­стью, минимумом других микро- и макроструктурных дефектов, с наиболее устойчивым равновесным состоянием внутренних связей, с минимумом внутренней свободной энергии, с мелкозернистой плот­ной кристалличностью или непрерывной пространственной сеткой (прослойкой) цементирующего вещества, с оптимальным содержа­нием стеклофазы и наличием других структурных параметров в со­ответствующем их наборе. Эти закономерности проявляются как в отношении твердых, так и упруговязкопластичных природных об­разований, к которым относятся глины, суглинки, лессы, мел, гип­сы, асфальтовые породы и др. Они служат основой тождественного закона створа, вскрытого в теории ИСК.

Наблюдается также другая закономерная связь между свойства­ми главного породообразующего минерала и свойствами породы со спадом показателей свойств по мере накопления дефектов структу­ры, которая является также обобщающей основой закона конгруэн­ции в теории ИСК (см. 3.2). Такая тождественность закономерного изменения свойств под влиянием структурных параметров у при­родного камня и ИСК возникает при сходных процессах, которые характерны как для природного генетического, так и заводского технологического периодов. В обоих этих случаях, при формирова­нии структур и свойств, прослеживается воздействие законов крис­таллизации из растворов и расплавов, закона эвтектики, правила фаз и др. Различие состоит только в том, что в короткие технологи­ческие периоды производства ИСК можно направленно регулиро­вать процессы структурообразования; избегая влияния элементов случайности и аномальных отклонений, которые возможны при формировании структур и свойств пород в природных условиях. Именно поэтому более отчетливо выразились закономерности створа, конгруэнции и др., известные в теории ИСК, базирующиеся на логически обобщенном и обширном практическом материале. В природе эти объективные закономерности проявляются наиболее полно и объективно, хотя вскрыть их сложнее, чем у ИСК.








Дата добавления: 2015-09-18; просмотров: 401. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия