Студопедия — Формулировка закона Ома
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Формулировка закона Ома






Сила тока в участке цепи прямо пропорциональна напряжению на концах этого проводника и обратно пропорциональна его сопротивлению: I = U / R; [A = В / Ом]

 

2. Упругие волны (звуковые волны) — волны, распространяющиеся в жидких, твёрдых и газообразных средах за счёт действия упругих сил. В зависимости от частоты различают инфразвуковые, звуковые и ультразвуковые упругие волны. В жидких и газообразных средах может распространяться только один тип упругих волн — продольные волны. В волне этого типа движение частиц осуществляется в направлении распространения волны. В твёрдых телах существуют касательные напряжения, что приводит к существованию других типов волн, в которых движение частиц осуществляется по более сложным траекториям. Упругие волны, распространяющиеся в земной коре, называют сейсмическими волнами.

Продольные – колебания среды происходят вдоль направления распространения волн, при этом возникают области сжатия и разрежения среды. возникают в любой среде (жидкости, в газах, в тв. телах).

Поперечные – колебания среды происходят перпендикулярно направлению их распространения, при этом происходит сдвиг слоев среды. возникают только в твердых телах.

Скорость упругой волны в тонком стержне: продольные v=(E/ ρ)^1/2, поперечные v= (G/ρ)^1/2, где G- модуль сдвига среды, ρ- плотность среды.

Скорость волны в гибком шнуре: v=(F/ρ)^1/2.

Скорость звука в жидкостях и газах:V=(dp/dρ)^1/2

Длина волны - это расстояние между ближайшими точками, колеблющимися в одинаковых фазах.

Волновое число — это отношение 2π радиан к длине волны

уравнение плоской волны

 

3.Термодинамические параметры - температура, плотность, давление, объем, удельное электрическое сопротивление , энтропия и другие физические величины.

Основное уравнение МКТ идеального газа:

Внутренняя энергия идеального газа:

- молярная теплоёмкость (при постоянном объёме), - число степеней свободы молекулы. Температура

Термодинамическая вероятность — число способов, которыми может быть реализовано состояние физической системы.

Энтропия: .

 

 

Билет №12.+

1. Действие магнитного поля на движущийся точечный электрический заряд. Сила Лоренца.

2. Внутренняя энергия и способы её изменения. Способы теплопередачи. Количество теплоты и теплоемкость. Первый закон термодинамики как закон сохранения энергии. Классическая теория теплоемкости, расхождения её результатов с экспериментами.

3. Упругие (механические) волны. Механизм и условия возникновения упругих волн. Поперечные и продольные упругие волны, условия их возникновения. Формулы скорости упругих волн в различных средах. Длина волны. Циклическое волновое число. Уравнение плоской волны.

 

1.Магнитн поле оказывает воздействие не только на проводники, но и на свободные электрические заряды движущиеся в этом поле.

Сила Лоренца (сила, действующая со стороны магнитного поля на движущийся заряд).

Правило левой руки.

Если расположить ладонь так чтобы в нее вход силовые линии поля, а 4 пальца – по направлению скорости положительного заряда (против вектора скорости для отрицательных зарядов), то большой палец покажет направление силы Лоренца.

Зависит от угла. 1)Вдоль а=0 F=0 2)Перпенд. a=п/2 3)п>a>0 Движ по спирали

Рассмотрим вначале движение частицы с зарядом q и массой m в однородном постоянном электрическом поле напряженностью . Напряженность поля в этом случае не зависит ни от координат, ни от времени (такое поле возникает, например, в заряженном плоском конденсаторе, отсоединенном от источника). Следовательно, на заряженную частицу со стороны поля действует постоянная сила , которая сообщает частице постоянное ускорение . Если частица имеет начальную скорость , как показано на рисунке 1, то ее движение в таком поле похоже на движение тела, брошенного под углом к горизонту в однородном поле тяжести, где ускорение тела также постоянно и равно !

 

2. Все тела состоят из молекул, которые непрерывно движутся и взаимодействуют друг с другом. Они обладают одновременно кинетической и потенциальной энергией. Эти энергии и составляют внутреннюю энергию тела. Таким образом, внутренняя энергия - это энергия движения и взаимодействия частиц, из которых состоит тело. Внутренняя энергия характеризует тепловое состояние тела. Внутреннюю энергию можно изменить путем совершения работы и теплопередачи. Если над телом совершается работа, то внутренняя энергия тела увеличивается; если же это тело совершает работу, то его внутренняя энергия уменьшается.

 

3. Упругие волны (звуковые волны) — волны, распространяющиеся в жидких, твёрдых и газообразных средах за счёт действия упругих сил. В зависимости от частоты различают инфразвуковые, звуковые и ультразвуковые упругие волны. В жидких и газообразных средах может распространяться только один тип упругих волн — продольные волны. В волне этого типа движение частиц осуществляется в направлении распространения волны. В твёрдых телах существуют касательные напряжения, что приводит к существованию других типов волн, в которых движение частиц осуществляется по более сложным траекториям. Упругие волны, распространяющиеся в земной коре, называют сейсмическими волнами.

Продольные – колебания среды происходят вдоль направления распространения волн, при этом возникают области сжатия и разрежения среды. возникают в любой среде (жидкости, в газах, в тв. телах).

Поперечные – колебания среды происходят перпендикулярно направлению их распространения, при этом происходит сдвиг слоев среды. возникают только в твердых телах.

Скорость упругой волны в тонком стержне: продольные v=(E/ ρ)^1/2, поперечные v= (G/ρ)^1/2, где G- модуль сдвига среды, ρ- плотность среды.

Скорость волны в гибком шнуре: v=(F/ρ)^1/2.

Скорость звука в жидкостях и газах:V=(dp/dρ)^1/2

Длина волны - это расстояние между ближайшими точками, колеблющимися в одинаковых фазах.

Волновое число — это отношение 2π радиан к длине волны

уравнение плоской волны:

 

Билет №13.+

1. Магнитное взаимодействие. Индукция и напряженность магнитного поля. Сила Ампера. Индукция магнитного поля элемента тока (закон Био-Савара-Лапласа), прямого проводника с током, соленоида.

2. Явление переноса в газах: диффузия, вязкость, теплопроводность. Уравнение явления переноса. Молекулярно-кинетическая теория явлений переноса в газах.

3. Дифракция волн. Объяснение дифракции волн на основе принципа Гюйгенса-Френеля. Дифракция Фраунгофера (дифракция параллельных лучей) на одной щели и на дифракционной решетке.

 

1. Магнитное взаимодействие — это взаимодействие токов.

Напряжённость магнитного поля — (стандартное обозначение Н) это векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M:

Магнитная индукция — векторная величина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства. Определяет, с какой силой магнитное поле действует на заряд , движущийся со скоростью .

На проводник с током, находящийся в магнитном поле, действует сила, равная F = I·L·B·sinα. Направление силы Ампера определяется по правилу левой руки: если левую руку расположить так, чтобы перпендикулярная составляющая вектора магнитной индукции В входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90 градусов большой палец покажет направление силы, действующей на отрезок проводника с током, то есть силы Ампера.

Закон Био-Савара-Лапласа — Магнитное поле любого тока может быть вычислено как векторная сумма полей, создаваемая отдельными участками токов.

Тогда магнитная индукция внутри соленоида

 

2. В термодинамически неравновесных системах происходят особые необратимые процессы, называемые явлениями переноса, в результате которых осуществляется пространственный перенос массы, импульса, энергии. К явлениям переноса относятся теплопроводность (перенос энергии), диффузия (перенос массы) и вязкость (перенос импульса).

Теплопроводность. Если в первой области газа средняя кинетическая энергия молекул больше, чем во второй, то вследствие постоянных столкновений молекул с течением времени происходит процесс выравнивания средних кинетических энергий молекул, т. е., выравнивание температур.

Диффузия. Происходит самопроизвольное проникновение и перемешивание частиц двух соприкасающихся газов, жидкостей и даже твердых тел.

Внутреннее трение (вязкость). Суть механизма возникновения внутреннего трения между параллельными слоями газа (жидкости), которые движутся с различными скоростями, есть в том, что из-за хаотического теплового движения осуществляется обмен молекулами между слоями, в результате чего импульс слоя, который движется быстрее, уменьшается, который движется медленнее — увеличивается, что приводит к торможению слоя, который движется быстрее, и ускорению слоя, который движется медленнее.

При нарушении равновесия в изолированной системе осуществляется перенос:

3. Дифракция Волн - явление огибания волнами препятствий и проникновение их в область геометрической тени. Явление дифракции можно качественно объяснить применением принципа Гюйгенса к распространению волн в среде при наличии преград. Явление дифракции объясняется с помощью принципа Гюйгенса, согласно которому каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн задает положение волнового фронта в следующий момент времени. Тип дифракции, при котором дифракционная картина образуется параллельными пучками, называется дифракцией Фраунгофера.







Дата добавления: 2015-09-18; просмотров: 787. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия